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The problem of controlling turbulent boundary layers was studied using tech-
niques employed in control system analysis and design. During the last three
years, the linearized Navier-Stokes equations were modified to include a boundary
input of blowing/suction along the wall. By a Galerkin method, the modified lin-
earized Navier-Stokes equations were converted into a temporal control theoreti-
cal model, to which modern control synthesis can be applied. The resulting state
space model allows a multivariable feedback design combining an array of sen-
sors with an array of actuators along the wall. Based on this spectral decomposi-
tion, a parallel architecture for the implementation of temporal controllers allows
significant decrease in computational bandwidth. For each wavenumber linear-
quadratic-Gaussian multi-variable synthesis and model reduction techniques are
used to derive robust feedback controllers. Controller performance was tested on
a direct numerical simulation of a fully developed turbulent channel flow. Con-
troller performance for the nonlinear flow was surprisingly good, suggesting that.
linear systems can be used as a basis for developing controllers for near-wall tur-
bulence. Controllers are being developed on the basis of the three dimensional
linearized Navier-Stokes equations. Both spanwise and streamwise shear sensors
are considered. By a Galerkin method, a temporal state space model is deter-
mined where, for every wave number pair, a 500 state system is obtained with
~ two inputs and four outputs. Model reduction techniques are used to reduce the
state space drastically, and wave number pairs that produce the largest shear
stress amplification for uncertainty induced at the wall are investigated.
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1 Intl_'oduction

The potential benefits of controlling flows that occur in common engineering applications
are significant. Applications include drag reduction for aircraft, high maneuverability for
military aircraft, jet noise reduction, and enhanced mixing and better fuel efficiency for
internal combustion engines. Because of its importance as well as its genuine intellectual
challenge, flow control has attracted much attention from many able fluid dynamicists. These
attempts, however, have not been very satisfactory. ,

Most of the flow control research, however, has been ad-hoc based on the mvestlgator s
physical intuition. Some progress has been made from such attempts, especially since the
discovery of the coherent turbulence structures that exist in the near-wall region of turbulent
boundary layers. Choi et al. [1], for example, report an active control scheme, which was
designed to reduce the strength of the near-wall streamwise vortices. This active control
scheme, which was based on the physical observations that there are strong correlations
between the near-wall streamwise vortices and the high skin-friction region, is reported to
reduce the viscous drag by as much as 25%.

Although some progress has been made through similar ad-hoc attempts, it is our belief
that much more progress can be made if we can utilize modern control theories for flow
control. A few examples of applications of modern control theories to flow control have
appeared in the literature recently. The foundations of optimal control theory as applied
to the equations governing fluid flow were developed and its application to flow control was
reported by Choi et al. [2], Moin and Bewley [3], and Lee et al. [4].

Unlike previous researchers, our group considered a system theory approach to transition
control, which revealed a rich structure of modes whose input-output properties were charac-
terized in terms of their observability and controllability [5]. These dynamical systems were
obtained by a Galerkin projection applied to the two-dimensional linearized Navier-Stokes
equations. Two important aspects were recognized. Only modes which were controllabls
and observable at the wall could be used by the controller and that the near-wall turbulerce
structure alone was sufficient to control for viscous drag prediction. In [5] only a simple
integral controller on the shear stress measurement was used and only applied to, at most,
a few wave numbers. However, it was shown to control a two-dimensional finite-amplitude
disturbance responsible for the secondary instability, thus suggesting that nonlinear effects
could be handled by a linear controller. Efforts on improved dynamic response by using
linear-quadratic-Gaussian (LQG) optimal control synthesis showed that the required control
energy could be reduced over that of the simple integral compensator [6]. The LQG controller
was designed on a reduced state space obtained from the Galerkin projection method.

2 Progress Over the Grant Period

Over the last three years, these results for a single wavenumber have been significantly mod-
ified. First, it was recognized that even for a single wavenumber, there are two controls and
two outputs [7]. The original work [5] considered only a single input/single output system.
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The dynamic system in [5] contained a derivative of the control. By a simple transformation,
this was removed [7]. The spatial decomposition produces a controllable system only with
respect to the control at that wavenumber. Therefore, a parallel architecture of compen-
sators in wave space can be constructed [7, Appendix A]. Each compensator is based on the
dynamic system formed from the Galerkin projection associated with the Chebyshev expan-
sion for each wavenumber. The resulting state space is quite large and a much smaller state
- space is required for controller development. This smaller state space, obtained by a form of
valanced realization 7,8, Appendix A and B, is used for LQG design where the uncertainty
is assumed to be emanating from the wall and is modeled as an input with the same input
matrix as the control [7,8, Appendix A and B]. For the two-dimensional controller where the
system is minimal phase, good loop transfer recovery is obtained producing good stability
margins for robust control [7,8].

The parallel structured controller of [7] for multiple wave numbers was first applied to
the more realistic linearized Navier-Stokes equations to test controller performance. The full
order system had 8,000 states and the controller only required 640, where 32 controllers of
the order 20 operated in parallel. The result is that the reduced order controller suppressed
up to 90% of the wall shear stress in a two-dimensional channel flow. Given this success,
the controller was embedded in a direct simulation of Navier-Stokes equations for controlling
skin-frictional drag in a two-dimensional channel flow [9, Appendix C]. Although controlling
skin-friction drag in two dimensions cannot be readily extrapolated to the three-dimensional
turbulence case, the testing of the controller in a nonlinear two-dimensional environment
has produced valuable insight into the capability of linear controllers. Applying the linear
controller (10% of the order of the full system) to the bottom wall of a two-dimensional
turbulent periodic channel flow at a Reynolds number of 1,500 dramatic drag reduction of
up to 60% with respect to the turbulent flow was obtained. This motivated the application of
an array of two-dimensional controllers placed parallel to each other at 32 spanwise locations
in a three-dimensional channel. Streamwise shear stress measurements are only shared within
each two-dimensional controller at the same spanwise locations. Therefore, no information
from different spanwise locations was shared. A 10% decrease in drag reduction occurred
[10, Appendix D]. However, since no measurements were shared in the spanwise direction,
the resulting shear stress varies significantly in the spanwise direction, at a wavenumber
corresponding to the wall-layer streaky structures (Fig. 1). By additional blowing and suction
proportional to the spanwise variation of the streamwise-averaged wall shear stress, the shear
stress oscillations in the spanwise direction was removed (Fig. 2) and the drag reduction was
about 16%. These results are reported in detail in [11, Appendix E].
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Figure 1. Contours of the wall-shear stress, ou/oyl
(a) channel with 2d controller; (b) uncontrolied.
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Figure 2. Contours of the wall-shear stress, Ju/dyl,:
(a) channel with 2d controller plus ad-hoc controller;
(b) uncontrolied.
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Given the success with the two-dimensional controller, the three-dimensional controller
is being developed. Here, we consider the linearized three-dimensional Navier-Stokes equa-
tions as the system dynamics where the control is applied through wall-transpiration on a
two-dimensional surface and both spanwise and streamwise shear stress distributed over the
wall are used as measurements. The linearized governing equations are discretized through
a Fourier transform which decomposes the system controls and outputs into a set of in-
dependent systems, controls, and outputs for each streamwise and spanwise wavenumber
pair. The cost criterion, total wall-shear stress, also decomposes into a sum of components
of wall-shear stress for each wavenumber pair. Again, reduced order controllers for each
wavenumber pair can be implemented in parallel [12, Appendix F]. The dynamic structure
now contains both the Orr-Sommerfield and Squire modes and the important coupling be-
tween them. The question about energy amplification associated with the linear dynamic
system can now be addressed. Observability and controllability resolution allows the con-
struction of reduced-order controllers. For each streamwise and spanwise wavenumber pair,
a reduced-order controller has been designed and its performance evaluated in the presence
of the full dynamic system [12].

Besides boundary layer control, our linear controller design approach, based on approxi-
mation of the physical system, is applicable to other processes. For example, in [13, Appendix
G) the Rayleigh-Bénard problem of delaying the onset of convection in terms of increasing
the temperature difference across an infinite layer of fluid heated from below is stabilized
where the critical Rayleigh number is elevated signficantly above that of the uncontrolled
system. These results have application of material processing, solidification, semiconductor
melts, welding, evaporative coating adn crystal growth.
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Robust reduced-order controller of laminar boundary layer transitions

L. Cortelezzi and J. L. Speyer
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A framework to derive optimal and robust reduced-order controllers of fluid mechanics and plasma physics
flows using linear-quadratic-Gaussian design, or, in modern terms, H, design, is presented. As a test case,
two-dimensional channel flow is considered. A reduced model is derived, and a controller is designed based
upon this model. Initial conditions creating transient growth of wall-shear stress are constructed. The controller
is tested on & 32 wave number simulation. A wall-shear stress reduction, up to 90%, is obtained. The potential
transferability of the controller to engineering applications is discussed. [S1063-651X(98)06408-8]

PACS number(s): 47.62.+q, 47.27.Cn, 47.27.Rc, 47.27.Vf

The reduction of drag produced by skin friction, or, in
other words, the reduction of wall-shear stresses (WSS's)
generated by near-wall turbulence have received wide atten-
on. *“The skin friction constitutes about 50%, 90%, and
100% of the total drag on commercial aircraft, underwater
vehicles, and pipelines, respectively’’ [1]). Two are the near-
wall flows of interest: boundary layers that change from
laminar to turbulent regimes, and boundary layers that are
inherently turbulent. Correspondingly, efforts to reduce skin
friction fall into two broad categories: transition inhibition
and turbulence suppression. References [1—4] are recent re-
views summarizing achievements and open questions in
boundary layer control.

Boundary layer control has been attempted with some
success. References [5—23] are articles published in the past
four years. It is becoming widely accepted that even better
results can be obtained by using controllers able to analyze
distributed measurements and coordinate distributed actua-
tors. However, very little has been done [24-26] to exploit
the tools recently developed in the control community
[27,28]. In particular, lincar-quadratic-Gaussian (LQG) de-
sign, or, in modern terms, H, design, combined with model
reduction techniques for multiinput-multioutput (MIMO)
systems, has never been used in fluid mechanics nor plasma
physics.

Using a case study, this paper introduces the reader to a
framework for deriving optimal and robust reduced-order
controllers for flows of interest in fluid mechanics and
plasma physics. As a case study, we show that MIMO LQG
(H,) design can be successfully applied to suppress up to
90% of the WSS in a two-dimensional transitional channel
flow. The framework can be easily applied to control prob-
lems described over simple domains (rectangles, circles and
ellipsis, cubes, cylinders, tori, etc.) by linear partial differen-
tial equations with nonhomogeneous boundary conditions.
The spectral decomposition depends on the geometry of the
problem and, consequently, appropriate base functions
should be selected. Once the spectral decomposition is in
order, the framework can be applied step by step. In the case
when there is more than one partial differential equation, the
state space equations for the full problem are obtained by
stacking the ordinary differential equations generated by the
Galerkin projection of each partial differential equation. This

1063-651X/98/58(2)/1906(5)/$15.00 PRE 58

paper also addresses the potential transferability of the con-
troller to engineering applications.

We consider two-dimensional incompressible Poiseuille
flow in a periodic channel of length Lk and height 2k. The
undisturbed velocity field has a parabolic profile with center-
line velocity U, : see Fig. 1. Since we are interested in con-
trolling the transition of the boundary layer from laminar to
turbulent regimes, we consider a small perturbation of flow
quantities. The reader should be aware that with the term
“trapsition,’’ we identify the disruption of the laminar re-
gime in a fully developed boundary layer due to the growth
of spatially localized near-wall perturbations. The linearized
Navier-Stokes equations are written in terms of the perturba-
tion stream-function ¢,

(8,+Us)AY-U"Y,=Re"'AAY, - (1)

to satisfy continuity identically. The problem is made dimen-
sionless by using 4 as a characteristic length and /U, as a
characteristic time. The Reynolds number is Re=U_h/v.

! disturbance t,
Poiseuille AU tiy
Flow |— 2 ts
TTYTTT
B
FFT FET
[T} u’ i] m 21 eese
L C: i’ Z
L Chxl X Ex Zy
a Sensor = actuator
controller [E.] estimator

fast Fourier transform

FIG. 1. Controller architecture.
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To suppress perturbations evolving within the bottom
boundary layer, we apply blowing and suction at the bottom
wall (see Fig. 1). For simplicity we assume that the actuators
are uniformly distributed. Perturbations in the top boundary
layer are left free to evolve. The corresponding boundary
conditions are

'//y|y=tl=¢’ly=l=0, ()

where the control function v, prescribes the amount of
blowing and suction at the bottom wall. We impose that the
mass of fluid injected equals the mass of fluid removed.

To detect and measure the deviations of the boundary
layer from the laminar regime, we measure the gradient of
the streamwise velocity component at given points x=x;
along the bottom wall (see Fig. 1),

z(xiat)=¢yy|y=-l' (3)

In other words, we measure the first term of the WSS, 7,
=Re™!(¢,,— Yez)lye—1- The second term of the WSS is
zero in the uncontrolled case, and is known in the controlled
case.

We define an optimal performance index J, or cost func-
tion, to design a controller for the LQG (H;) problem. Since
we are interested in suppressing the WSS, we define

ty (L .
h,fif:/jo (W, +02)|ymo1dx dt. @)

The integrand represents the cost of the WSS being different
from zero. Moreover, the integrand implicitly accounts for
the cost of implementing the control itself. There are two
reasons to minimize the cost of the controller: In any engi-
neering application the energy available to drive the control-
ler is limited, and a large control action may drive the system
away from the region where the linear model is valid.

To reduce Egs. (1)-(3) to a set of first-order ordinary
differential equations, we make a few transformations
loosely based on Refs. [24] and [26]. We write the stream
function as ¢= @+ x to embed the actuator into the evolu-
tion equation, and to make the boundary conditions homoge-
neous. Substituting =@+ x into Eq. (1), we obtain a forced
equation for the Poiseuille flow

(3,+Ud)A¢p-U"¢.=Re"'AAS
- (3,4‘ Uax)AX+ U"Xx
+Re"1AAY, 5)

¢x|y= -1= —v(x,),

with homogeneous boundary conditions @|ye=1=@)ly==1
=0. The forcing function x satisfies the nonhomogeneous
boundary conditions (2), i€, Xlym-1==Uw(*:8), Xly=1
- =x,|ym21=0. We also substitute ¢=¢+yx into Egs. (3)
and (4). The measurement equation (3) becomes

z(x, :t)=(¢yy+ny)|x=xl.y--l, 6

while the cost function (4) takes the following form:-

1 (L
J=.,uﬁj:ffo [(Byy+xpy)* +Xodym—1dx dt. (7)

ROBUST REDUCED-ORDER CONTROLLER OF LAMINAR ...
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Subsequently, flow quantities are spectrally decomposed
by using circular functions in the streamwise direction and
Chebyshev polynomials in the vertical direction. We expand
¢ and y as follows:

N M
6=2 2 [am(t)cos(ar)+bun(t)sin(e,x)1Caly),
®)

N
x="§=:l [Pa(t)cos(@n%) +g,(Dsin(@,x)1D(»), ()

where @, =2mn/L. Functions C,, and D are combinations of
Chebyshev polynomials constructed to satisfy the boundary
conditions, ie., Cu(*1)=C,(x1)=D(1)=D'(%1)=0
and D(— 1)=1. We also expand the measurement function z
as follows:

N
z= D, [ca(t)cos(e,x)+d,(H)sin(ax)].  (10)

n=]

Substituting expansions (8), (9), and (10) into equations (5)
and (6) and using Galerkin's projection, we obtain

dy du
7 =Ay+But+B, i’ z=Cy+Dsu. (11)

To transform the above equations into standard state-space
form, we define a new vector x=y+ B,u, and two. new ma-
trices B=B,+AB,,D=D;+CB,. Finally, we obtain the
state-space equations

dx Ax+B
dt *

z=Cx+Du, (12)
with initial condition x(0)=x;, where x is the internal state
vector, u is the control vector, and z is the measurement
vector. Matrices 4, B, and C contain the dynamics of the
Poiseuille flow, actuators, and sensors, respectively. Matrix
D contains the direct coupling between sensors and actua-
tors. The cost function (7) becomes

t
J= lim f[z’z+uTWTWu]dt, (13)
tf—oﬁ t

where the superscript 7 denotes transpose. The matrix W is
obtained by spectrally decomposing the last term in the cost
function (7). _

The advantage of the present formulation is that the whole
problem decouples with respect to the wave number. All
matrices in Eqgs. (12) and (13) are block diagonal. The block
diagonal structure of the matrix A4 was first recognized in
Ref. [24]. The above state-spacc system is consequently
equivalent to N state-space subsystems, one for each wave
number. For a given wave number r the state-space equa-
tions are '

dx,
——-=AX,+Bu,,

T 7,=Cx,+Du,, (14)
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with initial condition x,(0) =x,,. Vectors x,, 4, , and z, have
the following structure: x,=[a,g, - - - »@rprsDr0s - - Bl
u,=[p,.q,), z=[c,,d,)". The cost function also de-
couples with respect to the wave number, and we obtain N
optimal performance indexes. For a given wave number r,
the cost function'is defined as follows:

t
J,=lim | [z, +ul WIW,u,1dt. (15)
t—e 4

Consequently, the design of an optimal and robust controller
Jor system (12) with Eq. (13) has been reduced to the inde-
pendent design of N optimal and robust controllers, one for
each wave number, for the subsystems (14) with Eq. (15).

The challenge of the present study is to reduce the size of
the controller. The controller of the full system would have
2N(M+1) states. A controller with thousands of states is of
no interest in engineering applications, because of the
amount of hardware and computer power necessary to com-
pute a real-time control law. We derive a lower order con-
troller in two steps: First we construct a lower order model of
Eq. (14), and subsequently we design an optimal and robust
controller for the reduced-order model. To obtain a lower
order model, we transform Eq. (14) into Jordan canonical
form. The matrices 4,, B,, C,, and D, that describe the
dynamics of the reduced-order model are obtained from the
matrices in Jordan canonical form by retaining rows and col-
umns corresponding to equally well controllable or observ-
able states. Hat denotes the quantities associated with the
reduced-order model.

The design of an optimal and robust controller for the
LQG (H,) problem is divided in two parts: the linear qua-
dratic regulator (LQR) and the minimum variance estimator
(Kalman-Bucy filter) [27,28]. The LQR provides an optimal
control law in terms of the internal state vector. In general,
however, the internal state vector is not directly measurable.
The Kalman-Bucy filter provides an optimal estimate of the
internal state vector in terms of the measurement vector z,.
The result of the LQG () design of an optimal and robust
controller based on the reduced-order model of Eq. (14) is
summarized by the following equations:

u=—-Kx,, (16)

&k

z =.2,§,+E,u,+£,[z," Cp.x.r—Drur]s 17

with initial conditions X,(0)=0. Equation (16) is the control
law. The gains matrix K, is obtained by minimizing the op-
timal performance index

" ‘ L)
J,= lim f L2, + T Wi W, Jdt, (18)
tf—"ﬂ

where z.=C,%,—D,u,. Equation (17) is the the minimum
variance estimator. The matrix £, is obtained by minimizing
the variance of the estimated state vector X, with respect to

the internal state vector x, assuming that the reduced model
of Eq. (14) is affected by additive Gaussian white noise. In
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FIG. 2. Temporal evolution of wall-shear stress along the bot-
tom wall of the channel: uncontrolled case (a); controlled case (b).
Temporal evolution of blowing and suction along the bottom wall
of the channel (c).

this study, however, the power spectral densities of the ad-
ditive noise are used as design parameters to produce robust
controllers. The initial condition X,(0)=0 implies that the
estimator starts with no information about X, .

Figure 1 links with simplicity the mathematical formula-
tion to its computational implementation, by summarizing in
a block diagram the control strategy described above. The
controller can be programmed in a computer routine whose
input is an array containing the gradients of the streamwise
velocity component, and whose output is an array containing
the blowing and suction at the wall. The gradient of the
streamwise velocity component, ¢, , is converted by a fast
Fourier transform (FFT) into z,’s. Each pair of estimator (17)
and controller (16) blocks is integrated in time by, for ex-
ample, a third-order low-storage Runge-Kutta scheme. Par-
allel computation produces #,’s. An inverse FFT converts
u,’s into the actuating signal v,, . This routine can be embed-
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ded in any Navier-Stokes solver able to handle time-
dependent boundary conditions for the control of more real-
istic two-dimensional transitional boundary layers [29].

Figure 1 also provides the basic architecture for the po-
tential implementation of the present controller in practical
engineering applications. The gradient of the streamwise ve-
locity component, ¢,,, can be measured by
microelectromechanical-systems (MEMS) hot film sensors
[30]. Analog to digital converters (4/D) and digital signal
processors (DSP’s) convert the measured gradients into z,'s.
Each pair of estimator (17) and control (16) blocks is re-
placed by a microprocessor, «nd a parallel computation pro-
duces ,’s. A DSP and a digital to analog converter (D/A4)
produce the actuating signal. Finally, MEMS technology will
provide the necessary hardware. Note that a variety of actua-
tors can mimic small amplitude blowing and suction at the
wall: porous walls, micropumps, deformable walls, and ther-
mal actuators [30].

We use a combination of unsteady modes and transient
growth to create a worse scenario test case. We choose the
Reynolds number and channel length in order to have at least
a few unstable modes. The nonorthogonality of the eigen-
functions associated with Eq. (1) permits us to construct ini-
tial conditions leading to transient growth; see Ref. [3] for
references. We obtain initial conditions specifically able to
generate transient growth of the WSS, instead of internal
energy, by modifying a technique proposed in Ref. [31]. Al-
though transient growth will be eventually subdued by the
viscous effects, it permits testing the capability of the con-
troller in suppressing disturbances that can trigger nonlinear
effect and transition to turbulence.

We design a controller for two-dimensional Poiseuille

flow in a periodic channel of length L =207 at Re=10 000.
The wave numbers n=38,9, and 10 are unstable. We use a
grid resolution of N=32 and M= 124. The order of the full
system is 8000. Using the model reduction technique previ-
ously described, we create a reduced model of order 640.
This reduced model maximizes the ratio between perfor-
mance and the number i states. We derive 32 controllers of
order 20, one for each wave number. Controllers operate in
parallel. Figure 2(a) shows the temporal evolution of the
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WSS along the bottom wall of the channel for the uncon-
trolled case. The WSS presents a rich structure because of
the transient growth of 32 stable and unstable wave numbers.
Figures 2(b) and 2(c) show the temporal evolution of the
controlled WSS and of the blowing and suction along the
bottom wall of the channel. Although the estimator starts
with no information about the internal state of the system,
the controller reduces the initial WSS in the first few time
steps. Subsequently, the amplitude of blowing and suction
rises to suppress the effects of transient growth. Eventually,
blowing and suction decreases as the transient growth sub-
dues. The controlled WSS shows only some low amplitude
ripples during the entire simulation. The comparison of the
Figs. 2(a) and 2(b) shows up to 90% WSS reduction. The
remaining unsuppressed WSS is due to the modes that can-
not be controlled. The performance of the controller can be
improved at the price of increasing its order.

In conclusion, we presented a framework for the applica-
tion of LQG (M) design and model reduction to flows of
interest in fluid mechanics and plasma physics. As a case
study, this framework has been used to design an optimal
and robust reduced-order controller able to suppress up to
90% of the WSS in a two-dimensional transitional channel
flow. This controller can be programmed in a computer rou-
tine whose inputs are the gradients of the streamwise veloc-
ity component, and whose outputs are the blowing and suc-
tion at the wall. This routine, suited for parallel computing,
can be embedded in any Navier-Stokes solver for the control
of more realistic two-dimensional transitional boundary lay-
ers [29]. We also presented a hardware architecture for the
potential implementation of the controller in engineering ap-
plications. Extensions of LQG () design and applications
of H. design [27,28] to three-dimensional Poiseuille flow
and two- and three-dimensional Blasius boundary layers are
in progress.
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Q. VW, = power spectral density matrices
of process and measurement noises
g(I(x)f(y) = boundary input function

R, A = state and control weighting matrices
Re = Reynolds number U H/v
s complex frequency

U. centerline velocity
Uy = primary Poiseuille flow solution for velocity in x
direction
u(t), a(t) = scalar input function
a(x, y. 0, = small perturbation of flow velocity in x
o(x, y. 1) and y directions
V*(x.y.1) = primary velocity of flow in y direction
(1), w(t) = Gaussian, white process and
measurement noises
x,y = channel coordinates in streamwise and
wall-normal directions
x(8), X(t) = state vector
x() = estimate of state vector
z = streamwise component of shear
o, o = wave number, fundamental wave number
y = degree of closed-loop stability
6() = delta function
v = kinematic viscosity
¢ = modified stream function
v = stream function
[a, b] =a'b
[a(x), b(x)]; =inner produc’t- /c;f a and b defined as
-l- f a(x)b(x) dx
LJ pn
Ouw Om = unmodeled and modeled components
O = conjugate transpose
-1 = absolute value
£ = defined as

1. Introduction

EEDBACK control of plane Poiseuille flow was introduced in
Hu and Bau' and Joshi et al2 Hu and Bau' approached the
problem as a modified Orr—Sommerfeld solution problem. Joshi
et al.2 introduced a control-theoretic framework to the problem. It
was shown that the governing Navier-Stokes equations can be con-
verted to control-theoretic transfer function and state-space models
using a numerical discretization method.?2 Using the transfer func-
tion models, it was shown that plane Poiseuille flow (channel flow)
can be stabilized using a simple, constant gain feedback, integral
compensator controller.? By choosing proper sensor locations, Joshi
et al.2 were able to achieve a stable, closed-loop system that was
extremely robust to changing Reynolds numbers. The subject of this
paper is the description of an optimal controller by moving away
from classical transfer function control design to state space meth-
ods. In the trarisfer function design used thus far,? the system was
stabilized, but the stable system still had closed-loop eigenvalues
very near the imaginary s axis. This resulted in slow dissipation of
perturbation energy. The present design provides an optimal, stabi-
lizing controller that achieves a significantly faster dissipation rate
of perturbation energy, while reducing required control energy.
Unlike the simple integral feedback control of Joshi et al.,* opti-
mal controllers are complicated systems in themselves.® This adds
considerably to the complexity of the overali closed-loop system.
In fact, many beneficial qualities have been proven only when the
controller is of the same dimension as that of the plant. In the flow
case, this brings a special problem because the plant is of infinite
dimension. Theoretically, the controller must also be of infinite di-
mension. This is impractical for many reasons. First, it is impossible
to physically implement an infinite dimensional controller. Second,
the use of even very high-order finite dimensional plants for con-
troller design leads to numerical problems in the optimal control
synthesis equations. We will design an optimal controller using a
finite order model of the infinite dimensional plant. However, ap-
plying reduced-order controllers to full-order plants has the risk of
making unmodeled, stable parts of the plant unstable. Therefore,
controllers must be designed to ensure this does not haooen.

This paper is organized as follows. In Sec. II, the linear channel
flow problem, state-variable control models, and the single-wave-
number flow model are reviewed. This section is essentially a re-
view of Ref. 2. In Secs. III and IV, a linear quadratic Gaussian
(LQG) controller design is introduced, and ways in which closed-
loop eigenvalues can be made stable to a prescribed degree are
shown. Section V explains how the unavoidable unmodeled dy-
namics of any reduced-order model of an infinite dimensional plant
can lead to closed-loop instability in LQG design. Distributed ac-
tuation and distributed sensing are shown to be dual solutions to
the stability problem. Section VI demonstrates the performance of
high-order optimal controllers. Section VII presents an extremely
low-order controller design that achieves comparable performance
to the high-order optimal controller design. Section VIII presents
conclusions. -

II. Linear Channel Flow Control Problem

A. Dynamic Equations

We consider the same plant as in Ref. 2, i.e., two-dimensional,
plane, Poiseuille flow between two parallel, stationary plates
(Fig. 1). Let the channel be of finite length and finite height, with the
centerline at zero. The flow in the channel is described by the Navier-
Stokes equations. Poiseuille flow is an exact solution to the non-
linear, ‘incompressible Navier~-Stokes equations given flow driven
by an externally imposed pressure gradient through two stationary
walls. Itisgivenas U*(x, y, 1) = U (y) = 1—y%, V*(x, y, ) =0,and
P*(x,y,t)= —2x/Re. Given the primary Poiseuille flow, consider
small perturbations in the velocities of a(x, y, t) in the horizontal di-
rection, 9(x, y, t) in the vertical direction, and j(x, y, t) in the pres-
sure field. The linearized, incompressible Navier-Stokes equations
may be formed by substituting the primary flow and small pertur-
bations into the nonlinear, incompressible Navier-Stokes equations
and disregarding the second-order terms involving the perturbations:

B ) 4 ynBE2D o Eis, .1y

= ErD | 2 ity o
81‘5(3;,’)1, D U aﬁ(xa.x %))

= _fﬁ%';z."_)'-f-év’ 3(x, y. 1) ¥))

di(x,y, 1)  oU(x,y.¢t
afx,y )+ bx 3.1 _

ax dy 0 @

where the flow variables are nondimensionalized by the channel
half-height and the centerline velocity. By introducing a stream
function, ¥ (x, y. t), where -

') ’
qx,y.0 1.‘/.’_("_'2_’.). @
. ay
and
- a_8¥G.y. 0
'U(x, )'- ') - ax (S)
Egs. (1-~3) may be combined into a single equation:
3 3%y 8 ady 3y 8 8%y
wae Ty - V0% T U057
EUMNW . 1 4, |
BT Rl +t% Vv v*y) ()

Assume periodic boundary conditions in the streamwise x direction.
For channel flow, with rigid plates at y =<1 and 1, the no-slip
boundary conditions become

Ulx.v==1.01=0 N
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ﬂ(X.y:—--l,t):() (8)
dy
Yx.y=1.0=0 )]
-ai,-(x.y=1,t)=0 (10)
ay -
With an initial condition,
v, y.t =0 =g,y (1

the boundary value problem is completely formed. Equations (6-11)
represent the starting point for construction of a feedback control
system. These equations do not include any control terms and they
do not describe any sensing of flowfield variables.

B. Boundary Input

We consider the case of blowing/suction at the lower wall of the
channel. The boundary conditions are now modified from before to
include boundary input, represented as the known separable function

q@OIx)f (),

vx,y=-10=q¢X)fiy=-1) (12)
W foy=-D _
-5(15- y=-1,1)=q®lx) 3y =0 (13)
Y(xy=1,0=0 (14)
. %‘[i(x,y= 1Ln=qnimXO=D _ (1s)
ay dy

Note that these conditions constrain the function f(y) such
that f(y=-1#0, [3f(y=-11/dy=0, f(y=1)=0, and
[af (y = 1)]/dy = 0. Many functions may be appropriate. One such
function is

f=iy+iy -y —dy+1 (16)

To relate boundary conditions on ¥ to blowing/suction in the wall-
normal direction, we use Eq. (5) to relate #(x, y, ¢) and ¥ (x, y, £).
Then Eg. (12) becomes

al(x),
ax

Note that #(x, y, ¢) is related to the derivative of {(x).

The homogeneous equation (6) and the inhomogeneous boundary
condition (12) can be converted into an inhomogeneous equation
with homogeneous boundary conditions by introducing

dx.y. ) EY(x, Y, 1) —q(O) fNI(x) (18)
Then by substituting Eq. (18) into Eq. (6), we obtain
a3% aa 3¢ 8 9%
e toay - U0 " U005
FUQ) 88 LB 1
dy? ax Re 3x2 9y? ~ Re 0y*
dq (1) 3%(x) _ 89 31
a  ax? at ay?

3U(x) dl(x)
-Q(‘)—é;;-u()’)f()') -9 —=

ix,y=-1,0=—q() fo=-1 an

1%
Re ax*

fo I(x)

a2
v L2

34(x)
x4

3*fy)

al(x) XU ()
ax dy?

1 xSy |, 1

+ 2 a5 + RO (19)

The boundary conditions in terms of ¢ are now ¢(y =—1)=0,

[0¢(y=—~1)1/3y=0, ¢(y=1)=0, and [3¢(y = 1)}/dy =0. The

first two lines of Eq. (19) are the original dynamical equation, Eq. (6),
and the next four lines are all known input terms.

1
+4() fO) + 2O )

C. Boundary Output

We use the streamwise component of shear at a single bound-
ary point, z(x;, y=—1, 1), as our boundary output, which is given
by z(x;, y=—1, 1) =[di(x;, y =—1,1)]/dy. By expressing a(x;,
y==1,1) in terms of the stream function (4), z(x;, y=~1,1)
=[3*y (x;, y =1, 1)}/3y* and by observing Eq. (18),

Py xiy=-11

Z(xi.)'=—1. ‘)= ayz

Pfy=-1

_ PGy =-110
= =

ay?

q(t) 1(x;) (20)

D. State-Space Formulation

As described in Ref. 2, the linear partial differential flow equation
(19) can be converted to a set of linear ordinary differential equations
by use of a Galerkin method. Approximate the solution of Eq. (19)
as

N M
s y.0= Y Y am®PB@®ILG) @

nm=Nm=(

and then use appropriate inner products to obtain a first-order system
of equations.* In Eq. (21), the various I, (y) are formed from
Chebyshev polynomials* and

P,(x) & eimx, ay=2r/L,—L/2<x<L/2 (22)
where the value (nay) is called the wave number « of the system,
wheteas aq is called the fundamental wave number. Note that only
integral multiples of the fundamental wave number are represented
in the solution (21). This comes about because periodic boundary
conditions in the x direction can only be satisfied by integral num-
bers of the fundamental wave number.

The resulting ordinary differential equations are then expressed
in state-space form by defining the state as a vector of coefficients
anm(t) from Eq. (21). The result is the standard state-space repre-
sentation

d—xaii)- = Ax(t) + Bu(z) .(23)
z(t) = Cx(t) + Du(?) (24)

In our case, D =0.

E. Single-Wave-Number Model

We consider the periodic channel model shown in Fig. 1 with
boundary blowing/suction and boundary shear measurement. The
Reynolds number considered is Re=1 x 10*. The total length of
the channel is L =4x leading to the fundamental wave number
o =0.5. Recall that only integral multiples of this fundamental
wave number may exist in the periodic channel. For the single wave
number model, only one wave number is included in the model, .
corresponding to @ = nap = 1.00. This wave number is selected be-
cause it is the only wave number that leads to unstable modes for
this channel geometry.* Input is distributed along the entire bottom
plate with a sinusoidal weighting function, I(x) = sin(x). This type
of distributed input has very favorable properties. It will be shownin

- Ladx

Y

Re=10,000
o= 1.00

’ L
~dw(x)/dxa-cos{x)

Fig.1 System model for Poiseuille channel flow.

shear sensor at x=+x
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Fig.2 Pole (x)/zero (o) configuration, channel model: Re =1 X 104, shear sensor at m, I(x) = sin(x), L= 47, and a = 1.0,

Sec. V that a distributed input of this typé leads to a system in which
all modes are uncontrollable except those associated with the wave
number of /(x). In this case, the wave number of /(x) = sin(1.0x)
is @ = 1.0. Therefore, all modes resulting from all wave numbers
other than 1.0 are uncontrollable. This will allow us to consider only
those poles and zeros associated with & = 1.0 because the control
will affect these modes only. Note that the physical blowing/suction
is described by the equation i(x, y, £) =—q(0)[8/(x)/3x1f (y =
—1) = —q(r) cos(x) f (y = —1), Eq. (17). The f(y) function in the
input is chosen as in Eq. (16). To visualize the control theoretic
model, the A, B, and C matrices of the state-space model are trans-
formed to transfer function form. Figure 2 shows the locations of the
poles and zeros in the s plane for the channel flow system of Fig. 1.
The numerical verification of these poles and zeros was described
in Ref. 2.

II. Linear Quadratic Optimal Control Desizsn
with Prescribed Degree of Stability
To achieve a prescribed degree of stability’ with an optimal con-
troller, consider the exponential cost functional

T .
Ju)2 Tlim %/ Er{[Rx(1), ()] + [Au(r), u(t))} dr  (25)
- 00 0

where the matrix R is semipositive definite, A is positive definite
and defined a priori, and y is a positive scalar. We may show (see
Ref. 5) that we may convert this problem into a quadratic form and
solve for a controller that prescribes all eigenvalues of the closed-
loop system to be to the left of s = —y. Rewrite the cost functional
as

T . :
Ju) = 1_l£.m°° -71,— f [Re”* x(t), e”'x (1)) + [Ae” u(t), e u(e)] de
o

(26)
Define x(f) £ e”'x(¢) and u(r) £ e”'u(t). Then
T
J(@) = lim -1- / [RZ, x]+ [Aa, k]dt @7n
T-wT Jo.
Note
9—%?—) = d%'[e"x(t)] =ye’x(t) + e"%’—) (28)

By substituting for dx(r)/dt,

dz
— =@+Ini+Ba (29)

Let A2 A + Iy. Then the optimal control is given by o () =
~A~'B*Px(t) and

0 ==A"1B"Px(t) (30)

where P is obtained by solving the Riccati equation ‘
PA+A*P-PBA"'B'P+R=0 (31

The new closed-loop system dynamics matrix becomes
A—BA'B*P (32)

whose eigenvalues are all to the left of 5= —y. It can be shown
(see Ref. 4) that, if (A, B) is controllable and (A, R) is observable,
then (A + y 1, B) is controllable and there exists a positive definite
solution P of the matrix Riccati equation (31)for R>0. .

In theory, for full-order plant models, there is no restriction on the
value of y. In practice, however, for controllers built using reduced-
order plant models, y is limited by robustness of the controller when
applied to the full-order system.

IV. Optimal Estimator Design with
Prescribed Degree of Stability

In the previous section, we derived an optimal controller. As can
be seen from Eq. (30), the control is always represented in terms of
the current state x(¢). These states, however, are not available to us
in the channel problem. Instead, we have access to shear measure-
ments at only one or several locations along the boundary. Therefore,
we must construct an observer to estimate the state x(¢) from the
measured shear outputs z(¢). To see how this is done, consider a
noisy version of the state-space model shown earlier:

dx ()

== Ax(t) + Bu(t) + v(t) (33)
2(t) = Cx(t) + w(r) (34)
x&x(=0) (39)

where (A, B) is again assumed controllable and (A, C) is assumed
ahservable.
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Assumption 1: The noise processes v(¢) and w(t) are white,
Gaussian, of zero mean, and independent of each other and have
known covariances. The matrices Py, Q.. and W, are positive def-
inite:

Elu(v* ()] = Q.8(t — 1), E®Ml1=0 (36
Elw(w"(t)] = W8t — 1), E[w(®)]=0 (37
Elx(to))&m (38)

E{(x(t) = mllx () —m]"} £ Py (39)

where E(-) is an expectation operator.

It may be shown that a steady-state estimator may be constructed
that minimizes the error covariance between the actual state x{t)
and the estimated state £(Z,), where Z, ={z(l): —o0 <! <t}, i.e.,
the measurement history .

min E{(x() ~ $Z)1((0) - $(2Z)T'} @)

It can be shown that the optimal estimate, in the sense of Eq. (40),
is given by the conditional expectation 2 21(Z,) = E[x(1)/Z,],
where E(-/Z,) is the conditional mean operator. In the linear case
with Gaussian noiseg the structure of the estimator is

dx( R .

_df-)_ = AX(t) + Bu(t) + K [Cx(t) — z(1)] (C3))]

where
’ K.=-PC'W! 42)
and P, is calculated from a matrix Riccati equation,
P.A*+ AP, — P,.C*W'CP.+ Q. =0 43)

Note that the stability of Eq. (41) depends on the stability of
(A — P.C*W:'C). The assumptions that W,, Q. >0 and (A, C)
observable assure 3P, > 0 such that Eq. (43) is satisfied.

By considering a slightly different estimator Riccati equation,
we may constrain the closed-loop estimator poles to be stable to
a prescribed degree. It can be shown (see Ref. 4) that, if (A, C)
is observable, then (A +y1, C) is observable, and there exists a
positive-definite solution of the matrix Riccati equation:

PA+yD)*+(A+yDP, —B.C*'W'CP, + Q. =0 (44)

for Q. > 0, where y is a real, positive scalar. Then all eigenvalues of
(A — P.C*W]'C) are all to the left of 5 = —y. The new estimator
gain is given as

X, =-F.CW*! (45)

The goal of LQG design is to combine the results of deterministic
linear quadratic control theory and stochastic estimation theory to
form an overall control system. As we have seen, our system equa-
tions become stochastic with the addition of noise terms. Therefore,
in our controller design, we may no longer minimize a deterministic
cost functional. Rather, we now minimize the expected value of the
cost functional:

T
E()= E[ 7lfm -;,—f [Rx(8), x()) + [Au(t), u(1)] dt} (46)
- 00 0

where x(t) is now a stochastic process. It can be shown that the

optimal control is now expressed in terms of the estimated state,

Uope (1) = — A" B* PZ(1). The complete LQG solution is then
Plant:

i"di_‘). = Ax(t) + Bu(t) + v(t) 47
Observation:
z(t) = Cx(1) + w(r) (48)
Initial condition:
X &x(t=0) (49)

Estimator:

didif) = AZ(t) + Bu(t) +K[Cf(f) -z(t)] (50)

Feedback: ,
C ) = —ATBBE() 51)

where P is the positive-definite solution of Eq. (31) and K. is given
in Eq. (45). .

We may show that the overall estimator/controller system is stable
by stacking the state, x(¢), and the error, e(?) £ 7 —x,intoone vector
and studying the dynamics of the new system:

dx(r) . )
& | _[a-BAT'B*F)  —BAT'B*P [z
de) | 0 (A-Pcrwsic)] Lew
Tar

()
* [-—TCw(t) - v(t)] G

“The stability of the system is determined by the eigenvalues of

the dynamical matrix. Clearly, the eigenvalues are composed of the
eigenvalues of the closed-loop controller, (A — B A_“ B* P), and the
eigenvalues of the closed-loop estimator, (A — P.C* WS!C). We
have already proven that both of these matrices are stable (under
appropriate assumptions). Therefore, the overall control system is
stable also. This is known as the separation principle in LQG control.

V. Effects of Unmodeled Wave Number Dynamics
on the LQG Problem

‘We have already seen that the separation principle in LQG control
allows us to show that if the controller and estimator are both stable,
then the overall system is stable. We will see in this section that this
principle breaks down in the presence of unmodeled dynamics.

Any finite dimensional model is a reduced-order model for the
infinite dimensional channel flow problem. In terms of poles and
zeros studied earlier, more poles and zeros exist in the system than
are accounted for in the model and the subsequent controller design.
It is easy to imagine that an unmodeled pole could be drawn to the
unstable half of the s plane by a reduced-order controller. As a result,
even though the dusigned controller may stabilize the reduced-order
plant, it may not stabilize the actual infinite dimensional plant. Con-
sider the folluwing partition of the state-space model with noise

terms added:
- dxm
& _|Tar | _[An O][xm B, un (1)
R I | M R e ECRS
T .
(53)
z=[Cn Culx+w(r) (54)

The process noise v and the measurement noise w are assumed to
be Gaussian, independent, zero mean, white noise processes as in
Egs. (36) and (37). The unmodeled part is meant to denote only
the dynamics of wave numbers left out of the reduced-order model,
represented by (Jn| > N) in Eq. (21). The term A, is assumed stable.
Both A, and A, are of infinite dimension*—A,, because of the infi-
nite number of wave numbers left out of the reduced-order model and
A, because of the infinite number of poles for each of the finite num-
ber of modeled wave numbers, represented by (m > M) in Eq. (21).

Because we only know the modeled part of the system, we de-
sign an LQG controller/observer based on that part. Minimize the
expected value of a cost functional J,

Y .
E(N)=E { Aim T /o [Rxm (), xm ()] + [Au(r), u(t)]dt]
| (55)
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where R is any semi-positive-definite matrix and A is any positive-
definite matrix. The optimal controt is of the form

Uo(t) = —A7' B}, Pin (1) (56)

where £, (¢) is the estimate of the modeled state and the matrix P
is calculated by solving the algebraic Riccati equation,

A2P+ PA,—PB.AT'BLP +R=0 (57)

with the same assumptions as in Egs. (47-51) for the modeled parts.
Because we cannot obtain direct measurements of the current
state x,, (), we construct an observer as described in Sec. IV:
dxn (1)
dr

where the estimator gain X.= -P,C - W;' requires the solution of
another matrix Riccati equation, :

PAL + AP, —PC,W'CuP + Q. =0 (59

= Anin(t) + Butt(t) + K [Cnin() —2()]  (58)

Define the error between the estimated, modeled state, X (t), and
the actual state, X (), as ex(t). Then as in Ref. 6

den(t) o Gin@) - d2n()
de de de

= [An =P W, Calen(t) + PCL W] ' Cux(D)

+FP.CW w = Un : (60)
where the unmodeled state acts asa forcing term.
To study the entire controller/observer system, stack the modeled

state, the modeled error, and the unmodeled state, and consider the
dynamics of the stacked system:

and the stability of unmodeled dynamics is retained. Note that be-
cause [ (x) 3 0 for all but a finite number of points in the x direction,
this type of scheme is a distributed actuation scheme. Therefore, by
moving from a physically easier to implement point actuator to a
more difficult distributed actuator, we have retained stability of the
unmodeled dynamics. Physically, a distributed actuator is obtained
by a large number of independently programmable actuators placed
along the lower wall. If distributed actuation is infeasible or undesir-
able, we must look to the dual problem of sensing to gain stability.

B. Point Sensing vs Distributed Sensing

It is seen from Eq. (61) that if B, 54 0, stability may still be main-
tained if C, =0. This corresponds to making all unmodeled wave
number dynamics unobservable with respect to the shear sensor.
Placing a single shear sensor at a point along the lower channel wall
results in a measurement that includes the effects of ail wave num-
bers, both modeled and unmodeled. Clearly, C, # 0, and stability
is not guaranteed. This corresponds to the point forcing case in the
dual problem of actuation. By using a distributed sensing scheme,
however, we may form a new measurement that includes only the
effects of the modeled wave numbers. This is done by projecting a
distributed shear function, z(x, y = —1, t), onto the modeled wave
numbers. The distributed shear function, z(x, y = —~1, ¢) is physi-
cally created by measuring the shear at all points along the lower
channel wall. Then a new projected shear measurement, denoted
7(t), is defined as

N
z(z)ékeal{[z(x.y=—1.r>. 3 el"“v] } (63)
n==N x

where again the n range corresponds to modeled wave numbers
only. Note that, just as in the actuator case, we have implemented

dxm
dr (An - BnA™'B;,P) —B,A™'B, P 0 Xm Un
- dep — — —
':T = 0 (Am - PcC;, WoiCn) PCLW'Cuf| om |+ -K.w—v, _ (61)
dx, -B,A'B;P -B,A™'BLP A, *u v,
dr :

From the LQG theory presented in Sec. I1L, (A — B A™' By, P) and

(Am — P.C2 W' C,) are stable. However, from Eq. (61), the overall’

system may not be stable due to the unmodeled actuator influence
B, and sensor influence C, matrices. Therefore, we have seen that
in the LQG framework we cannot ensure overall stability unless the
unmodeled parts of the system are accounted for.

There are two ways to ensure system (61) is stable. One way
is to ensure B, =0, i.c., make sure the unmodeled dynamics are
uncontrollable with respect to the actuator. The other way is to ensure

- C, =0, i.c., make sure the unmodeled dynamics are unobservable

with respect to the sensor. Controllability and observability for the
plane Poiseuille flow problem were introduced in Ref. 2. We now
explore how we may achieve these conditions:

A. Point Actuation vs Distributed Actuation .

One way to guarantee that the overall system (61) is stable is
to ensure that all modes associated with unmodeled wave numbers
are uncontrollable with respect to the input by making B, =0. In
the fully developed channel flow system, this would account for the
wave numbers left out of the reduced-order model. If

N
I(x) 2 Real( > e""'°‘> (62)

noa =N

where the n range corresponds to the modeled wave numbers only,
then the projection of /(x) onto unmodeled wave numbers is zero
due to the orthogonality of Fourier components. As aresult, B, =0

a more physically complicated series of sensors to achieve overall
stability. )

There is a subtle difference between making the channel system
unmodeled dynamics unobservable as opposed to uncontrollable.
By making unmodeled dynamics uncontrollable, linear stability is
maintained (under appropriate conditions) because the unmodeled
dynamics cannot be affected by the input. By making unmodeled
dynamics unobservable, however, linear stability is also maintained
(under appropriate conditions), but unmodeled dynamics may be
affected by the input. These affected dynamics could produce tran-
sients that cause the linear model to become invalid.2

In terms of modeling, we need not include either unobservable
or uncontrollable modes in our plant models. Therefore, distributed
actuation or sensing allows models to be created using only a finite
number of wave numbers. Note, however, that even a single wave
number modél contains an infinite number of modes shown by the
infinite number of poles extending out into the left-hand s plane, as
shown in Fig. 2 (sec also Ref. 4).

VL Control Design Using Finite
Large-Order Models :

As we have seen in Sec. V, we may reduce the problem of includ-
ing an infinite number of wave numbers in a reduced-order model
to a problem of including a finite number of wave numbers by us-
ing distributed actuation or sensing. However, even with a model
containing only & finite number of wave numbers, the problem is
still infinite dimensional because of the infinite number of poles
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extending into the left-hand s plane for each wave number. Fur-
thermore, we do not know the exact position of poles far into the
left-hand s plane due to the finite number of basis functions used
in the y direction.* Still, these poles must be accounted for in the
control design. The fact that uncertain poles appear only at higher
frequencies in the bandwidth will be advantageous. It will allow a
robust controller to be designed that rolls off at high frequencies.

For disturbance rejection, it can be shown (see Ref. 5) that high
loop gain is preferable. On the other hand, for good output noise
suppression, the loop gain should be low at all frequencies in which
the noise enters.® It is generally assumed that noise is most destruc-
tive at higher frequencies. As a result, control design focuses on
high loop gain at low frequencies where disturbance rejection is
most important and low loop gain at high frequencies where noise
is more of a problem. Therefore, an ideal controller will cause loop
gain to roll off at high frequencies.

In addition to noise at high frequencies, the other major prob-
lem at high frequencies is unmodeled dynamics. We have already
pointed out that there are two types of unmodeled dynamics in the
channel flow problem. The first type is unmodeled dynamics of un-
modeled wave numbers. We accounted for these dynamics through
distributed control or distributed sensing. The second type is un-
modeled dynamics at high frequencies for modeled wave numbers.
This type of unmodeled dynamics has yet to be considered and
is common to most infinite dimensional systems. To account for
these dynamics, controllers are designed that give low loop gain at
the high frequencies of the open-loop controller/plant series where
unmodeled dynamics exist in order not to stimulate modes at those
frequencies. Roll-off has also been given a more analytic framework
by considering multiplicative, unstructured uncertainty.”

We consider the one-wave-number model shown in Fig. 1 with
Re=1x10*. Only ¢=1.0 is included in the model. All other
wave numbers are uncontrollable due to the distributed input of
I(x) = sin(x) as shown in Sec. V.A. A single point sensor is located
at . The length of the channel is 47 leading to a fundamental wave
number of &y = §.

We now design an LQG controller and compare closed-loop re-
sponse with that of the simple, integral controller introduced in
Ref. 2. The integral control method is shown in Fig. 3, and the LQG
control method is shown in Fig. 4. Two criteria will be used in com-
paring controllers: 1) output (shear) settling time and 2) required
control energy. Control energy will be defined as

T
E, & f lee(2)|? de (64)
0

where T is a finite upper bound.

We consider two models in evaluating the resulting LQG con-
troller: one model of order 252 (validation model) and the other
model of order 140 (reduced-order model). The validation model is
constructed by including all poles and zeros to the right of s = —4
(refer to Fig. 2). The reduced-order model includes all observable
and controllable poles and zeros to the right of s = —2 (refer to
Fig. 2). The reduced-order model was created by using the minreal
function within the MATLAB™ control toolbox® with the parame-
ter value tol = 1e—3. Table 1 lists all models considered in this study.
The Iqr and Iqe2 functions of the MATLAB control toolbox were
used to create an LQG controller using the reduced-order model.
The A matrix supplied to each of these MATLAB functions was
modified to (A + /) to achieve a prescribed degree of stability as

Intagrat:

described in Secs. I1I and 1V. The following parameters were used:
y =0.005, R=0.001C*C, A=1[, Q,=10BB*, and W, =1. The
R matrix was chosen to minimize shear in the cost functional (46),
the Q. matrix was originally chosen to recover robustness properties
using loop transfer recovery techniques,” y was chosen by trial and
error to decrease settling time without increasing control energy,
and W, and A were chosen using trial and error. The gain of the
integral controller was chosen as K; =0.07.

Figures 5 and 6 show the shear output and blowing/suction
input signal for the closed-loop system (validation model plus

Table1 Models used in LQG
controller design

Model name - Order

Validation 252
Reduced-order 140
Low-order 8

qgsuctior

blowing/suction

» X' =Ax+Bu
y=Cx+Du

" validation Model

X' = Ax+Bu
y = Cx+Du

LQG Controtler

Gain, K

troller.
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Fig. 5 Shear at ouput of closed-loop system: - ~ -, integral control
method, and ——, reduced-order LQG control method.
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Nondimensional Velocity input Nondimensional Velocity Input
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Fig. 6 Blowing and suction control input: - — -, input from integral
control method, and ——, input from reduced-order LQG control

method.
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Fig. 7 Root locus of optimal controller synthesized using reduced-

order model in series with validation model plant for gain K varying

from 0 to 4. )

~20-

—100— : H P
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Fig. 8 Open-loop response magnitude for series connection of LQG
controller (using reduced-order model) and validation model.

controller) for the same plant initial condition [ones (252, 1) in
MATLAB]. Clearly, using the LQG controller, the channel system
has a much shorter settling time. More significantly, this reduced set-
tling time is accompanied by lower control energy. Indeed, for the
LQG case, ELqg = 0.5809, whereas for the integral controtler case,
Et =0.8178. Note that, because all values are nondimensional, it
is the comparison of energies that is important, not the actual num-
bers. Similar results were obtained for other initial conditions, as
well as disturbance inputs.

In analyzing the resulting control system, consider Fig. 4. The
optimal control is defined at K = | with a properly designed LQG
controller. Note that many poles in the validation model are either
uncontrollable or unobservable as shown by pole/zero cancellations
(Fig. 2). These poles cannot be moved. We concentrate on moving
only the observable/controliable poles. Figure 7 shows the root locus
of the controller/estimator, designed using the reduced-order model
(order 140), in series with the validation model (order 252), for
gain values X varying from O to 4. Poles of the closed-loop system
achieve the goal of being to the left of s = —0.005 with gain K = 1.
Consequently, settling time is reduced. Finally, Fig. 8 shows the
magnitude response for the open-loop series connection of the LQG
controller (using the reduced-order model) and the validation model.
Note that the loop gain rolls off at higher frequencies.

VII. Control Design Using Low-Order Models

Although we achieved our goal in Sec. V1, we designed our LQG
controller with a high dimensional plant model (order 140). This
might lead to numerical problems if the design was attempted witha

0.

0.8

0.4F- -

0.2

imag Axis

H H H H

-0. i 1 A 1
-5.4 -03 =03 -025 -Og.d ;0‘;15 ~0.1 -0.08 [*] 0.05

Fig.9 Pole (x)/zero (o) configuration of low-order model.

Nondimensiona! Shear Output Nondimensional Shear Output

0.08 T T

% T8 200 250 30
time

Fig. 10 Shear at output of closed-loop system: - — -, using reduced-
order LQG controller, and ——, using low-order LQG controller.
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new model that contained several wave numbers as the model would
be even larger. As a result, we would like to develop a design that
uses an extremely low-order model. Consider the mode! shown in
Fig. 9 (low-order model). This model contains eight poles and seven
zeros.

An LQG controller is designed using only the low-order model.
The parameters for the design are the same as in Sec. VL Figure 10
shows the closed-loop output response of the validation model (order
252) and the controller obtained from the low-order model (Fig. 9).
An almost identical settling time is achieved compared with the con-
troller using the reduced-order model (order 140). Also, the control
energy is only slightly increased to Ejowonder = 0.6131. Using this
design, we have reduced the order of the LQG controller from 140
to 8, while maintaining performance.

VIII. Conclusion

Linear stabilization of plane, Poiseuille flow using linear
quadratic Gaussian optimal control theory has been examined. The
infinite dimensional nature of the problem poses challenges for finite
dimensional control. Distributed actuation and/or sensing methods,
as well as loop gain roll-off, can be used to address the inherent
unmodeled dynamics of finite dimensional models of infinite di-
mensional systems. Using linear quadratic Gaussian methods, we
achieved significantly higher dissipation rates, while using lower
control energy, than those reported in integral compensator control
schemes. We showed linear quadratic Gaussian designs that used
both a high-order and an extremely low-order plant model for con-
trol synthesis. The low-order controller produced results essentially
equivalent to the high-order controlier, In this paper, we have ex-
amined linear quadratic Gaussian control methods. Other control
approaches exist that are based on worst-case design.'® The meth-
ods discussed in this paper were aimed at reducing settling time and
control energy. However, additional criteria such as limiting tran-
sient growth will be important in preserving the integrity of a linear
model of channel flow and preventing transition of laminar channel
flow to turbulent channel flow,
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Skin-friction Drag Reduction Via Robust Reduced-order
Linear Feedback Control

L. CORTELEZZI *®*, K. H. LEE®, J. KIM* and J. L. SPEYER*®
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A successful application of a linear controller to a two-dimensional channel flow is
presented. An optimal and robust reduced-order linear feedback controller is derived
by using multi-variable linear-quadratic-Gaussian synthesis, or, in modern term, H;
synthesis, combined with model reduction techniques. This controller based on a
reduced-model of the linearized Navier - Stokes equations is applied to suppress finite-
amplitude near-wall disturbances in a channel flow at Re = 1500. The controller
efficiently reduced near-wall disturbances obtaining a substantial drag reduction and

eventually the flow is relaminarized.

Keywords: Robust feedback flow control, model reduction, shear flows, skin-friction, drag reduction

1. INTRODUCTION

Wide attention has been given to the problem of
reducing wall-shear stresses generated by near-wall
turbulence, or, in other words, to the problem of
reducing drag produced by skin friction. “The skin
friction constitutes about 50%, 90%, and 100% of
the total drag on commercial aircraft, underwater
vehicles, and pipelines, respectively” [1]. Conse-
quently, important economic and environmental
benefits will spring from the successful and reliable
control of near-wall turbulence.

In the recent years, boundary layer control has
been attempted by several investigators with some
success [1-24]. However, controllers able to

analyze distributed measurements and coordinate
distributed actuators are regarded by the fiuid
mechanics community as essential for achieving
better results. Tools for designing this class of
controllers have been developed by the control
community over the past two decades [25,26].
Very little has been done to exploit these tools in
connection with the control of boundary layers
[27-29] because of the belief that linear controllers
are not suited for controlling a nonlinear phenom-
enon, like wall turbulence.

Recently, Cortelezzi and Speyer [30] used multi-
input-multi-output (MIMO) linear quadratic
Gaussian (LQG) synthesis, or, in modern terms,
‘H, synthesis, combined with model reduction

* Corresponding author. Tel.: (310) 206-2732, Fax: (310) 206-6673, e-mail: crtiz@math.ucla.edu
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techniques for designing an optimal and robust
linear feedback controller able to suppress wall-
disturbances leading to transitions in a two-dimen-
sional laminar channel flow. The present paper
shows that the controller derived by Cortelezzi and
Speyer, based on a reduced-model of the linearized
Navier - Stokes equations, can be successfully
applied to the control of skin-friction drag ina
two-dimensional channel flow. This is an essential
intermediate step toward the derivation and
application of this class of controllers to three-
dimensional boundary layers.

The intermediate step of controlling skin-fric-
tion drag in a two-dimensional channel flow will
perhaps disappoint some readers because of the
fundamental differences between two and three-
dimensional turbulent channel flows. Turbulence
is essentially a three-dimensional phenomenon.
Consequently, results obtained by controlling
skin-friction drag in two-dimensional cannot be
readily extrapolated to the three-dimensional case.
However, the derivation and testing of optimal
and robust reduced-order linear feedback control-
lers in a two-dimensional environment has been
very valuable for understanding the potentiality
of MIMO LQG, H,, synthesis and model reduc-
tion in relation to boundary layer control pro-
blems.

In Section 2, we formulate the problem in terms
of Navier-Stokes equations and we provide de-
tails about the numerical scheme used to integrate
them. In Section 3, we derive the state space equa-
tions from the linearized Navier—Stokes equa-
tions. In Section 4, we reduce the order of the state
space equations and derive an optimal and ro-
bust reduce-order controller by using LQG,
H, synthesis. In Section 5 we apply the controller
to a turbulent channel flow at Re = 1500 and
discuss its performance. Conclusions will close the
article.

2. MATHEMATICAL FORMULATION

We consider the turbulent flow of an incompres-
sible fluid in a two-dimensional periodic channel

of length Lk and height 2h, see Figure 1. This

problem is governed by the Navier—Stokes and

continuity equations
Ou Ou Ou dp 1
IR PRI T v
ov @ v op 1

5[‘+uax+V5;=—'é;+R—eAv, (1)
Ou Ov
'5;‘*'*6;:0 (2)

where A is the two-dimensional Laplacian.
We made the problem dimensionless by using
h as characteristic length and h/U, as charac-
teristic time, where U, is the velocity at the center
of the channel. The Reynolds number is. Re =
U hfv.

We apply blowing and suction at the bottom
wall to suppress near-wall turbulence within
the bottom boundary layer. To simplify the
problem the actuators are assumed uniformly
distributed along the bottom wall. Near-wall
turbulence within the top boundary layer is left
free to evolve. The corresponding boundary condi-
tions are '

u(x,x1,8) =v(x,1,t) =0,
_ (3)
v(x,—1,1) = vu(x,1).
The control function v,, prescribes the amount of
blowing and suction at the wall. In the next
section, we will impose that the amount of fluid
removed equals the amount of fluid injected.
We measure the gradient of the streamwise
velocity at given points x = x; to detect and
measure near-wall turbulence within the bottom

yI—x % U. .

Lh

FIGURE 1 Flow geometry.
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boundary layer. In other words, we measure the
first term of the wall-shear stress, 7, = Re™ (Bu/
By + Ov[Ox) |y = — 1. L.,

z2(x;, 1) = g;u . 4)

x=x;,p=—1

Note that the second term of the wall-shear stress
is known when the actuators operate while is zero
in the uncontrolled case.

Time dependent incompressible Navier —Stokes
equations (1)—(3) with the appropriate initial
condition are integrated numerically using a semi-
implicit fractional step method. The second-order
implicit Crank-Nicolson is used for the viscous
terms and the nonlinear convective terms are
advanced using a 3".order low-storage Runge-
Kutta scheme.

A staggered grid is used in the computation.
All spatial derivatives are discretized with a 4.
order compact finite-difference scheme. A uniform
grid is used in the streamwise direction, while
a nonuniform grid corresponding to Chebyshev
collocation points is used in the wall-normal
direction. We simulate turbulent channel flows
on a computational domain of 4= x 2 with a re-
solution of 512 x (4. Detailed description of the
numerical metheds used to simulate the flow under
investigation are given in Ref. [31].

3. DERIVATION OF THE STATE-SPACE
EQUATIONS

In this section we outline the derivation of the state-
space equations [30]. To derive the state-space
equations we first linearize Eq. (1) with respect to
the laminar velocity field U(y) = (?—-1), see
Figure 1. To identically satisfy continuity, the
linearized Navier — Stokes equations are written in
terms of the stream-function ¢

9 8 dUoy |
kE-kUa—;C)Aw—-;y—z—g’;_-k—eAAw, (5)

and corresponding boundary conditions are

oy _

Bl vi(, 1),

o

— =1(x,1,1) =0. 6
5 o P(x,1,1) (6)

The measurement Eq. (4) becomes

)

z(x;, 1) = 32

(7

y==1

The design of a controller for the LQG (H2)
problem is contingent on the definition of an
optimal performance index, or cost function. A
cost function should be constructed with the intent
of simulataneously minimizing near-wall turbu-
lence and the cost of the controller. It is crucial to
minimize the cost of the controller because the
energy available to drive the controller is limited
in any engineering application. Furthermore, the -
system could be driven away from the region
where the linear model is valid by large control
action. Because of the high correlation between
near-wall disturbances and wall-shear stress, we
choose the following cost function:

se i [ [(22)+ (22)] o
y—ocf Jo 9y* Ox? y=—1 o
(8)

The integrand represents the cost of the wall-shear
stress being different from zero. Moreover, the
second term of the integrand implicity accounts
for the cost of implementing the control itself.

To reduce (5)—(7) to a set of first-order ordinary
differential equations, we make a few transforma-
tions as shown in Ref. [30]. Taking advantage
of the linearity of the problem, we assume that
the stream-function 1 is the sum by two parts: a
modified stream-function ¢ which satisfies to the
forced Eq. (5) with homogeneous boundary con-
dition, and a function x which satisfies to the non-
homogeneous boundary conditions forming a
forcing function to (5). Subsequently, flow quan-
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tities are spectrally decomposed by using circular
functions in the streamwise direction and Cheby-
shev polynomials in the vertical direction. We
expand ¢ and x as follows:

N M
dlx,y, 1) = Z Z{anm(t) cos(anx)

n=1 m=0

+ by () sin(a,x)|Cm(¥), (%)

N
x(x, 3,1 = 3 [pa(1) cos(ea)

n=1

+ gn(?) sin(anx)]| D(¥). (10)

where a, = 2wn/L. Functions C,, and D are com-
binations of Chebyshev polynomials constructed
to satisfy the boundary conditions, i.e.,

dCpm

Cn(y==%1)=—— =0,

( 3 P

Diy=-1)=1,

D(y=1)=‘—12 =0. (1)
d y=x1

We also expand the measurement function z as
follows:

z(x,t) = i[c,,(t) cos(anx)
n=|
+ du(2) sin(anx)). (12)

We substitute expansions (9), (10), and (12) into
the evolution and measurement Egs. (5)-(7) and
use Galerkin’s projection to obtain a set of ordi-
nary differential equations. These equations are
cast by matrix transformations into the following
state-space equations:

dx

E=Ax+Bu,

with initial conditions x(0) = xo. The vectors x, u
and z are the internal state vector, the control
vector, and the measurement vector, respectively.
The dynamics of the Poiseuille flow, actuators and
sensors, are contained into the matrices 4, B, and
C, respectively, while the direct coupling between

z=Cx+Du, (13)

sensors are actuators is contained into the matrix
D. Note that this coupling would be eliminated if
actuators dynamics could be explicity imposed.
The cost function (8) becomes

1

J= lim / o W, (14)
f=> J,

where the supercript T denotes transpose. The

matrix W is generated by spectral decomposition

of the last term in the cost function (8).

The main advantage of this formulation is the
decoupling of the problem with respect to the
wave number where all matrices in (13) and (14)
are block diagonal. Consequently, the state-space
system (13) is equivalent to N state-space sub-
systems, one for each wave number. The state-
space equations for a given wave number r are

dx
— = Arxr + Brura

ar 2 = Cox, + Dyu,, (15)

with initial condition x(0) = x,. The structure of
vectors x,, #,, z, is the following: x, = [a., ... a/ur,
bros---brad s = [P g7 2 =[cr,d)7. The cost
function (14) also decouples with respect to the’
wave number. It is the sum of N optimal
performance indexes J,. The cost function for a
given wave number r is defined as follows

. :
J, = lim / f[z,T 2 +ul W W,u,dr. (16)
= Jy

Consequently, the design of an optimal and robust
controller for the system (13) with (14) has been
reduced to the independent design of N optimal
and robust controllers, one for each wave number,
for the sub-systems (15) with (16).

The reader is referred to Ref. [30] for a detailed
derivation of the state-space equations.

4. MODEL REDUCTION
AND CONTROLLER DESIGN

The size of the controller is a crucial parameter in
engineering applications because of the amount of
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hardware and computer power necessary to com-
pute a real-time control law. Since a controller
based on the full system would have 2N(M + 1)
states, where N = 32 and M = 64 is considered a
simple case in literature, it is crucial to reduce the
order of the controller. A low-order controller for
the present problem can be derived in two steps
[30]: First by constructing a lower order model
of (15), and subsequently, by designing an opti-
mal and robust controller for the reduced-order
model.

In order to obtain a lower order model for each
wave number, we transform each state-space
subsystem (15) into Jordan Canonical form. This
transformation decouples the modes of each
subsystem, in other word it reduces the subsystem
matrices to a block diagoral form. From the
transformed B, and C, matrices the states that
are equally well controliable and observable are
determined. The matrices /i,, B,. C., D, that
describe the dynamics of the reduced-order inter-
nal state-space subsystem are obtained from the
matrices in Jordan Canonical form by remov-
ing rows and columns corresponding to poorly
controllable or observable states. Hat denotes
the quantities associated with the reduced-order
model.

Although a rigorous mathematical framework
for the designs of disturbance attenuation (M)
linear controllers is provided by the control
synthesis theory in [25,26], for this initial study
LQG (Hz) synthesis is quite adequate. In general,
the design of an optimal and robust linear feed-
back controller for the LQG (H;) problem is
divided in two parts: linear-quadratic regulator
(LQR) and minimum variance estimator (Kal-
man —Bucy filter). The LQR design provides an
optimal control law in terms of the internal state
vector by minimizing a cost function. The internal
state vector is essential to implement the control
law but, in general, it is not a physical quantity
directly measurable. The internal state vector is
reconstructed from the measurement vector z, by
the estimator. Since we have assumed no statistics,
the power spectral densities required for the

minimum variance estimator are chosen as design
parameters in order to keep the eigenvalues of the
estimator at the same order of magnitude as
the eigenvalues of the controller. In particular, the
power spectral density of the process noise is
chosen so that the resulting loop transfer matrix
approximates the loop transfer matrix of the LQR
which has significant robustness properties [32, 33].
In this study the LQG (H,) design of an optimal
and robust controller for each reduced-order state
space subsystem (15) can be carried outin parallel.
The final result of the LQG (H) is summarized by
the following equations:

u, = —K.x., (17)

A o n i e et
% = A,x, + Brll,- + L,[z, - Crxr - D,ur], (lg)

with initial conditions x.(0) = 0. Equation (17) is
the control law. It predicts the optimal blowing
and suction at the bottom wall by processing the
estimated reduced-order internal state vector X,
with the gains matrix K,. The gains matrix K, is
obtained by minimizing the following optimal per-
formance index:

"
J, = Jim, / 572, + ul W W,u,)dt, (19)
where 2, = C,%, — D.u,. Although Eq. (18) is the
minimum variance estimator in a statistical sense,
this filter is essentially an observer that recon-
structs from the measurements an estimate of
the reduced-order internal state vector. However,
when the estimator is eventually implemented in a
system -where the measurements and process
dynamics are corrupted by noise, the Gaussian
white noise assumption will be used to develop
the filter gains. The initial condition £,(0) = 0 im-
plies that the estimator starts with no information
about X,.

Note that the numerical integration of the
estimator. (18), the computation of the control law
(17), and fast direct and inverse Fourier trans-
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forms can be programmed in a computer routine
suited for paralle! computing [30]. Subsequently,
this routine can be embedded in any Navier—
Stokes solver for the control of simulated turbu-
lent channel flows as shown in the next section.

5. RESULTS

We designed a controller for two-dimensional
Poiseulle flow in a periodic channel of length
L = 4m at Re = 1500. We used a grid resolution of
N =32 and M = 60, consequently, the order of
the full system is 3904. Using the model reduction
technique previously described, we created 32
reduced models and derived 32 controllers of
order 12, one for each stdte space subsystem (15).
Controllers operate in parallel [30]. The combined
order of the controllers for all 32 wave numbers
is 384, it represents a dramatic reduction, about
90%, with respect to the order of the full system.

This controller is tested on a two-dimensional.

turbulent channel flow at Re = 1500. Since there
are no unstable modes at Re = 1500, we use a
combination of channel and wall modes to create
a worse scenario initial perturbation velocity field
{34]. The maximum rms value of the initial
perturbation velocity field is u,,,, = 0.3, i.e., 30%
of the centerline velocity of the undisturbed
laminar flow. We construct the initial velocity
field by superimposing a perturbation velocity field
onto the laminar flow. The corresponding initial
vorticity field produces pockets of positive and
negative vorticity distributed along the center and
walls of the channel. Although the initial distur-
bances in the two-dimensional channel flow will
eventually decay, they permit testing the capability
of the controller in suppressing near-wall turbu-
lence that can increase drag and trigger boundary
layer eruptions and flow separations in turbulent
boundary layers. Note that this initial condition
_includes nonlinear effects that are not included in
the linear mode! and also stimulates modes that
are not included in the reduced-order model, and
consequently, cannot be directly controlled.

Figure 2 presents a comparison of the vorticity
field in the controlled and uncontrolled cases at
time ¢ = 2 and 4. Figure 2 also presents the am-
plitude of blowing and suction applied to the
bottom wall of the channel. In the uncontrolled
case, at time ¢ = 2, two large pockets of negative
and positive vorticity can be recognized on the
left along the bottom wall, while minor vortical
structures populate the remaining part of the
boundary layer. At time ¢ = 4, the interaction of
the two pockets of vorticity with the rest of the
flow generates an eruption of fluid toward the
center of the channel. A large negative vortex
entrains some of the positive vorticity from the
wall increasing the separation. A similar process
takes place on a smaller scale further downstream.
Flow separation also occurs at the top boundary
layer; a large eruption can be recognised on the left
and two smaller eruptions further downstream.

In the controlled case, at time ¢ = 2, the vorticity
field near the bottom wall is strongly modified by
the action of the controller, see Figure 2. Pockets
of high positive vorticity have been removed while
pockets of high negative vorticity have been lifted
away from the wall. Only low negative vorticity
can be recognized within the bottom boundary
layer. The plot of v, shows that the controller
tends to inject fluid underneath pockets of negative
vorticity while it tends to remove flvids in cor-
respondence with pockets of positive vorticity. At
time ¢ = 4, the action of the controller can be more
easily interpreted. The controller breaks the
pockets of negative vorticity that have been lifted
up into smaller vortical structure. These structures
are made rolling along the bottom wall by in-
Jecting and removing fluid from the rear and the
front of each vortical structure. Note that at time
t = 2 the controller affects only the flow near to
the bottom wall leaving most of the vorticity field
unaffected. At time ¢ = 4, however, the controller
action has penetrated further toward the center of
the channel because of the viscous and nonlinear
effects.

Figure 3 presents a comparison of the vorticity
field in the controlled and uncontrolled cases at
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FIGURE 2 Vorticity field for the uncontrolled and controlled case and amplitude of v, at time + = 2 (a) and 4 (b). (Seg Coler

Plate I at the end of this issue.)

time =12 and 14. Figure 3 also presents the
amplitude of blowing and suction applied to the
bottom wall of the channel. The uncontrolled case
shows the evolution of a major eruption along the
bottom wall that affects nearly half of the bottom
boundary layer as well as part of the top boundary
layer. In particular, the pairing process of two
large negative vortical structures interacts with a
pocket of positive vorticity on the bottom wall.
The vortex pairing entrains parts of the positive
vorticity enhancing the separation of the flow.
In the controlled case almost the entire vorticity
field has been strongly modified by the controller,
high values of vorticity are confined to the top
boundary layer. Near to the bottom wall three
negative vortical structures are kept rolling by the
controller action although there is no significant

vorticity along the wall. As in the previous figure,
the controller injects and removes fluid from the
rear and the front of each vortical structure. In this
figure it is easy to see that v,. changes sign at the
streamwise locations corresponding with the cen-
ter of the vortical structures. The action of the
controller has also reduced the interaction between
top and bottom boundary layers resulting in an
mild attenuation of the near-wall turbulence at
the top wall.

Figure 4 presents a comparison of the vorticity
field in the controlled and uncontrolled cases at
time ¢ = 50. Figure 4 also presents the amplitude
of blowing and suction applied to the bottom wall -
of the channel. The uncontrolled case is dominated
by the least stable modes, while all the other modes
have been subdued by viscosity. Although the flow
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FIGURE 2 (Continued). (See Color Plate Il at the end of this issuc.)

is slowly relzzing toward the laminar regime, the
top and bottom boundary layers are still showing
sign of flow separation. In the controlled case the
flow has been nearly relaminarized over the entire
computatioda] domain. Correspondingly, blowing
and suction at the bottom wall is nearly zero.

Figure 5 shows the spatial and temporal
evolution of the wall-shear stresses in the uncon-
trolled case. The wall-shear stresses present a rich
structure because of the near-wall turbulence gene-
rated by the initial condition. However, viscous
effects eventually reduce the amplitude of the wall-
shear stresses over time; turbulence in fact cannot
sustain itself in a two-dimensional channel flow at
Re = 1500.

Figure 6 presents the spatial and temporal
evolution of the wall-shear stresses and blowing

and suction in the controlled case. The controllers
reduce the initial wall-shear stresses in the first
few time steps although the estimators (18) start
with no information about the reduced-order
internal state vector. Subsequently, the amplitude
of blowing suction rises to suppress the effects of
near-wall turbulence. Eventually, blowing and
suction decreases as the near-wall turbulence sub-
dues. Controlled wall-shear stresses show some
waviness due to poorly controllable low wave
number modes and some ripples at wave numbers
higher than 32. Ripples quickly disappears after
few time units, while low wave numbers wavi-
ness persists for longer time. By the end of the
computation, ¢ = 50, all the perturbations of the
wall-shear stresses have been suppressed and flow
has been nearly relaminarized, see Figure 4. The
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FIGURE 3 Vorticity field for the uncontrolled and controlled case and amplitude of v, at time 7 = 12 (a) and 14 (b). (See Color

Plate [l at the end of this issue.)

wall-shear stresses have a nearly constant value
1.62. This value indicates that the average velocity
profile near the bottom wall generates about 20%
less drag than the parabolic profile. However, this
more efficient profile will eventually relax to the
parabolic profile due to the viscous effects.
Figures 2-6 indicates the successful perfor-
mance of the 32 robust reduced-order linear
controllers operating in parallel. It is not clear
that it is necessary to control disturbances for
all 32 wave numbers since disturbances corres-
pondingly to high wave numbers are very quickly
damped. Consequently there is hope for further
reducing the size of the controller. Any further
reduction of the size of the controller increases the
potential of using the controller in engineering
applications. To investigate this issue we ran the

same simulation presented in Figures 2-6 with
only 16 robust reduced-order controllers operating
in parallel. The combined order of the controllers
for 16 wave numbers is 192, a substantial reduc-
tion, 50%, with respect to the previous reduced-
order controller, and about 95%, with respect to
the order of the full system.

Figure 7 presents the spatial and temporal
evolution of the wall-shear stresses in the con-
trolled case when only the controllers correspond-
ing to the 16 lowest wave numbers are operating.
During the first few time steps, when the turbu-
lence structures span over all the wave numbers,
this partially controlled case presents some notice-
able differences with respect to the fully controlled
case (Fig. 6). The controller compensates for its
inability of controlling high wave numbers by




88 . L. CORTELEZZI ¢t al.

FIGURE 3 (Continued). (See Color Plate IV at the end of this issue.)

increasing the amplitude of blowing and suction
at low wave numbers. Consequently, wall-shear
stresses show some spikes corresponding to high
wave number near-wall turbulence. However, be-
side these events the wall-shear stresses retain the
same trend as in the fully controlled case. At later
times, r > 10, the wall-shear stresses and blowing
and suction at the wall present a trend very similar
to the fully controlled case. The wall-shear stresses
show some low amplitude waviness at wave
numbers higher than 16. Blowing and suction at
the wall present a slightly higher amplitude and
deformation with respect to the fully controlled
case. Nevertheless, the overall effect of the 16 wave
numbers controller is a dramatic reduction of the
wall-shear stresses and a almost complete relami-
narization of the entire flow.

Drag reduction is the dominant reason driving
the effort of controlling near-wall turbulence. To
estimate the performance of the controller, we
compute the drag by integrating the wall-shear
stresses along the bottom wall of the channel.
Figure 8 compares the drag in the uncontrolled,
laminar, fully controlled and partially controlled
cases. The drag for the laminar case is exact and
equals 2. In the uncontrolied and controlled cases
the drag is initially 2 because the initial velocity
field has been constructed by superimposing a zero-
mean perturbation velocity field onto the laminar
flow. In the uncontrolled case, the drag drops
below the laminar value during the transient
period. Subsequently, drag increases above the
laminar value and with some fluctuation reaches its
maximum value 2.46 around ¢ = 25. In the last hall’
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FIGURE 4 Vorticity ficld for the uncontrolicd and controlled casc and amplitude of v, at time 7 = 50. (See Color Plate V at the end
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FIGURE 5 Time evolution of the wall-shear stresses along
the bottom wall of the channel in the uncontrolled case.

of the simulation the drag decreases toward the
laminar value because turbulence is subdued by
viscosity, since turbulence cannot sustain itself in a
two-dimensional channel flow at this Reynolds
number. In the fully controlled case, the drag
presents some large fluctuation below the laminar
value during the first few time units at the onset of
the turbulent flow. The amplitude of the fluctua-
tions reduces with time while the value of the drag
stays at about half of the laminar value. In the later
part of the simulation the drag slowly increases
while the flow is nearly relaminarized. The drag in
the partially controlled case is remarkably similar
to the fully controlled case. This results substanti-
ates the notion that it is not nécessury to control all
the wave numbers. ’
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FIGURE 6 Time evolution of the wall-shear stresses (a) and
blowing and suction (b) along the bottom wall of the channel
with all the controllers operating.

6. CONCLUSIONS

In this article we presented a successful application
of robust reduced-order linear feedback control to
a two-dimensional channel flow whose initial
condition consist of finite-amplitude disturbances.
A controller based on a reduced-model of the
linearized Navier—Stokes equation, i.e., 10% of
the order of the full size system, was designed by
using LQG (H;) synthesis. This controller was
programmed in a computer routine whose input

Wall-Shear Stresses

0.5
0.256

3
> 0

-0.25

b)

FIGURE 7 Time evolution of the wall-shear stresses (a) and
blowing and suction (b) along the bottom wall of the channel
with the controllers operating only on wave numbers 1 through
16.

measurements are the gradients of the streamwise
velocity component and whose output controls are
the blowing and suction at the wall. This routine,
suited for parallel computing, was embedded in a
direct numerical simulation of the Navier— Stokes
equations. As a case study, we applied the con-
troller to the bottom wall of a two-dimensional
turbulent periodic channel flow at Re = 1500.
The controller drastically reduced near-wall
turbulence preventing boundary layer eruptions
and flow separations and eventually relaminarized
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FIGURE 8 Comparison of the total drag measured at the
bottom wall of the channel: laminar flow, uncontrolled
turbulent flow. fully and partially controlled turbulent flow.

almost the entire flow. A dramatic drag reduction
was obtained, up to 50% with respect to the
laminar flow and up to 60% with respect to the
turbulent flow. Extensions of LQG (H3) design and
applications of Ho design [25,26] to three-dimen-
sional channel flows and three-dimensional Blasius
boundary layers are in progress.
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Abstract

Robust reduced-order feedback control of near-wall
turbulence in a channel flow is investigated. Wall-
transpiration is the means for suppressing near-wall
disturbances. Measurements of wall-shear stress to
be fed back to the controller are provided by sen-
sors distributed along the wall of the channel. A
quadratic cost function is composed of the wall-
shear stress and the control effort. Linear-quadratic-
Gaussian/loop-transfer-recovery synthesis, and model
reduction techniques are used to derive-robust feed-
back controllers from the linearized two-dimensional
Navier-Stokes equations. Controllers’ performance is
first tested on a numerical simulation of infinitesi-
mal three-dimensional disturbances in the presence of
finite-amplitude two-dimensional perturbations. Con-
trollers’ performance is subsequently tested on a di-
rect numerical simulation of a fully developed turbu-
lent channel flow. Preliminary controllers’ performance
for the nonlinear flow was surprisingly good, szgest-
ing that the linear system can be used as a basis for
developing controllers for near-wall turbulence.

1 Introduction

The reduction of drag produced by skin friction, or, in
other words, the reduction of wall-shear stresses gener-
ated by near-wall turbulence have received wide atten-
tion. “The skin friction constitutes about 50%, 90%,
and 100% of the total drag on commercial aircraft, un-
derwater vehicles, and pipelines, respectively” [1]. Two
are the near-wall flows of interest: boundary layers
that transition from laminar to turbulent regime and
boundary layers that are inherently turbulent. Cor-
respondly, efforts of reducing skin friction fall in two
broad categories: transition inhibition and turbulence
suppression. References [1-3] are recent reviews sum-
marizing achievements and open questions in boundary

1Corresponding author: Telephone (310) 206-2732, Facsimile
(310) 206-6673, E-mail: crtlz@math.ucls.edu
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layer control.

Boundary layer control has been attempted with some
success. It is becoming widely accepted that even bet-
ter results could be obtained by using controllers able to
analyze distributed measurements and coordinate dis-
tributed actuators. However, very little has been done
except for Refs. [4-7] to exploit the tools recently de-
veloped in the control community (8], [9]. In particular,
linear-quadratic-Gaussian (LQG) design, or, in modern
terms, M2 design, combined with model reduction tech-
niques for multi-inputs-multi-outputs (MIMO) systems
has been introduced in fluid mechanics by Cortelezzi
and Speyer [10].

Recently, Cortelezzi and Speyer [10] used multi-
input-multi-output (MIMO) linear-quadratic-Gaussian
(LQG)/loop-transfer-recovery (LTR) synthesis [11],
combined with model reduction techniques for de-
signing an optimal and robust linear feedback con-
troller able to suppress wall-disturbances leading to
transitions in a two-dimensional laminar channel flow.
The present paper shows that the controller derived
by Cortelezzi and Speyer, based on a reduced-model
of the linearized two-dimensional Navier-Stokes equa-
tions, can be applied to the control of skin-friction drag
in a fully developed three-dimensional turbulent chan-
nel flow.

In Section 2, we formulate the problem in terms of the
three-dimensional Navier-Stokes equations and we pro-
vide details about the numerical scheme used to inte-
grate them. In Section 3, we provide some motivation
for the approximate structure of the controller. Fur-
thermore, we derive the state space equations from the
linearized two-dimensional Navier-Stokes equations. In
Section 4, we reduce the order of the state space equa-
tions and derive a robust reduce-order controller by us-
ing LQG/LTR synthesis. In Section 5 we apply the con-
troller based on the two-dimensional linearized Navier-
Stokes equations to a three-dimensional transitional
channel flow at Re = 1500 and to a fully turbulent
channel flow at Re = 1700 and discuss its performance.
Conclusions will close the article.

2 Mathematical Formulation

We consider the flow of an incompressible fluid in a
three-dimensional periodic channel of length Lk, width
Wh, and height 2h, see Figure 1. This problem is gov-
erned by the Navier-Stokes and continuity equations

ug + uug + vuy +wu, = —pz + Re”1 A,
v + uvg + vuy +wv, = —py + Re7F Av, (1)
wy + uw; + vwy + ww; = —p; + Re”1 A w,

uz + vy +w;, =0. (2)

We made the problem dimensionless by using h as char-
acteristic length and h/U, as characteristic time, where
U, is the velocity at the center of the channel. The
Reynolds number is Re = Uch/v.

We apply blowing and suction at the walls of the
channel to suppress near-wall disturbances within the
boundary layer. To simplify the problem the actuators
are assumed continuously distributed along the walls.
The corresponding boundary conditions are

u(z, 1, z,t) = w(z, £1,2,t) = 0, 5
vz, %1, z,t) = viu(2, 2,1). ®)

The control functions vty prescribe the amount of
blowing and suction at the walls.

We measure the gradient of the streamwise velocity
along the walls at given points (zi,2j) to detect and
measure near-wall disturbances within the boundary
layer. In other words; we measure

z(zi, Zj,‘t) = “ylz:x;,x=z,~,y=:tl- (4)

Time dependent incompressible Navier-Stokes equa-
tions (1)-(3) with the appropriate initial condition are
integrated numerically by using a spectral code with
computational domain (47,2, 47/3) and a grid resolu-
tion of (32,65,32) in the (x,y,z) directions, respectively.

3 Derivation of the State-Space Equations

The challenge of the present study is to reduce the size
of the controller. The controller based on the full sys-
tem would have > 10° states, when the Navier-Stokes
equations are written in the vertical-velocity-vertical-
vorticity (v,wy) form, and spectrally decomposed with
32 Fourier moces in the streamwise and spanwise di-
rections and 65 Chebyshev polynomials in the vertical
direction. A controller with hundreds of thousands of
states is of no interest in engineering applications be-
cause of the amount of hardware and computer power
necessary to compute a real-time control law. Conse-
quently, it is crucial to reduce the order of the con-
troller.

Figure 1 presents the architecture of the controller
tested in this study. In order to reduce the order of
the controller we slice the channel with 32 xy-planes
equally spaced in the z-direction. Since the gap be-
tween planes is small with respect to the spanwise di-
mension of the channel and there is no mean flow in
the spanwise direction, we assume that the flow in
a xy-plane is nearly two-dimensional. We apply the
controller derived by Cortelezzi and Speyer [10] from
the linearized two-dimensional Navier-Stokes equation
to each plane. This controller has successfully re-
duced skin-friction drag generated by near-wall finite-
amplitude disturbances in a two-dimensional channel
flow at Re = 1500 [12].
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In this section we outline the derivation of the state-
space equations in a given xy-plane [10]. In Section 5
blowing and suction is applied to the bottom wall only
in the case of a transitional flow while is applied to
both walls in the case of a fully developed turbulent
flow. Consequently, to simplify the exposition we de-
rive the state space equations assuming that blowing
and suction is applied only at the bottom wall. The
application of blowing and suction to both walls is a
trivial extension of this case.

We consider two-dimensional incompressible Poiseuille
flow in a periodic channel of length Lk and height
9h. The undisturbed velocity field has a parabolic pro-
file with centerline velocity U., see Figure 1. We lin-
earize two-dimensional Navier-Stokes equations about
the parabolic profile and we rewrite them in terms of
the perturbation stream-function ¢

(6:+UB:) A Y- U, = Re™ & A, (5)
to identically satisfy continuity.

To suppress perturbations evolving within the bottom
boundary layer we apply blowing and suction at the
bottom wall (see Figure 1). For simplicity we assume
that the actuators are continuously distributed. Per-
turbations in the top boundary layer are left free to
evolve. The corresponding boundary conditions are

‘/’y'y::hl = ¢Iy=1 =0, (6)

where the control function v, prescribes the amount
of blowing and suction at the bottom wall. We impose
that the mass of fluid injected equals the mass of fluid
removed.

¢z|y=—1 = —vw(z,t),

To detect and measure the near-wall disturbances, we
measure the gradient of the streamwise velocity com-
ponent at given points z = z; along the bottom wall
(see Figure 1)

2(zi,t) = Yyyly=-1. (7

In other words, we measure the first term of the wall-
shear stress, 7,z = Re~*(¥yy — Yes)ly=-1. The second
term of the wall-shear stress is zero in the uncontrolled
case and is known in the controlled case.

We define an optimal performance index J, or cost
function, to design a controller for the LQG (H2) prob-
lem. Since we are interested in suppressing wall-shear
stress, we define '

tg—00

. ty L
J= lim / / (02, + 2 ly=mrdedt.  (8)

The integrand represents the cost of the wall-shear
stress being different from zero. Moreover, the inte-
grand implicitly accounts for the cost of implementing

the control itself. There are two reasons to minimize
the cost of the controller: In any engineering applica-
tion the energy available to drive the controller is lim-
ited; and a large control action may drive the system
away from the region where the linear model is valid.

To reduce (5)-(7) to a set of first-order ordinary dif-
ferential equations, we make a few transformations.
We write the stream-function as ¥ = ¢ + x to em-
bed the actuator into the evolution equation and to
make the boundary conditions homogeneous. Substi-
tuting ¥ = ¢ + x into equation (5), we obtain a forced
equation for the Poiseuille flow Co

(B +U8:) A ¢ —U"ds = Re™' & A¢ o
—(6t+U8::)AX+U"X: +R€-1 AAX, ( )

with homogeneous boundary conditions @ly=+1 =
éyly=+1 = 0. The forcing function x satisfies the non-
homogeneous boundary conditions (6), i.e., Xzly=-1=
—vy(z,1), Xly=1 = Xyly=t1 = 0. We also substitute
¥ = ¢ + x into equations (7) and (8). The measure-
ment equation (7) becomes

2(zi, ) = (dyy + ny)|z=za.y=-;: (10)

while the cost function (8) takes the following form

tg—co

iy L
= 2 ./: _/0 [('¢w+XW)2+x3-z]y=—1dzdt. (11)

Subsequently, flow quantities are spectrally decom-
posed by using circular functions in the streamwise
direction and Chebyshev polynomials in the vertical
direction. We expand ¢ and x as follows:

N M -
6= > [anm(t) cos(@nz) +bam(t) sin(anz)]Cm(y),
n=1m=0
(12)

N
X = Z[pn(t) cos(anz) + gn(t)sin(anz))D(y), (13)
n=1

where a, = 27n/L. Functions Cr, and D are combina-
tions of Chebyshev polynomials constructed to satisfy
the boundary conditions, i.e., Cm(xl) = Cp(£1) =
D(1) = D'(%1) = 0 and D(-1) = 1. We also expand
the measurement function z as follows:

N
z= Z[c,.(t) cos(anz) + dn(t) sin(anz)). (14)

n=l .

Substituting expansions (12), (13) and (14) into equa-
tions (9) and (10) and using Galerkin’s projection, we
obtain '
dy

d
—=Ay+.Blu+B3 —ut—,

e 7 z =Cy+Dsu.

(15)
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To transform the above equations into standard state-
space form, we define a new vector z =y + Bs u,
and two new matrices B = By +A B3 ,D =Ds +
C Bj . Finally, we obtain the state-space equations

%—;— =Az +Bu,
with initial condition z (0) = zo ; where = is the in-
ternal state vector, u is the control vector and z is the
measurement vector. Matrices A , B, C' contain the
dynamics of the Poiseuille flow, actuators and sensors,
respectively. Matrix D contains the coupling between
sensors and actuators. The cost function (11) becomes

2 =Cz +Du, (16)

s

J= lim / [z* z +u* W* W u]di, (17)
ty—oo /s

where the superscript * denotes transpose. The matrix

W is obtained by spectrally decomposing the last term

in the cost function (11).

The advantage of the present formulation is that the
whole problem decouples with respect to the wave num-
ber. All matrices in (18) and (17) are block diagonal.
The block diagonal structure of the matrix A was first
recognized in Ref. [5]. The above state-space system is
consequently equivalent to N state-space sub-systems,
one for each wave number. For a given wave number r
the state-space equations are

dz,

dt z, =C: 2y + Dy 2y,

(18)
with initial condition z, (0) = = 0. Vectors z» , 4, ,
z, have the following structire: =, = [ajg," - a[y,
:-0’ e 'b:-M]-y Ur = [Prs Qr]‘7 Zr = [cﬂ df]'n where / in-
dicates the Fourier coefficients that have been affected
"by the transformation. The cost function also decou-
ples with respect to the wave number and we obtain N
optimal performance indexes. For a given wave number
r the cost function is defined as follows

= A, z, +B: u,,

t

Jr= lim /![z: zp +utr W W, u, ]dt. (19)
ty—co Jy

Consequently, the design of a robust controller for the

system (16) with (17) has been reduced to the indepen-

dent design of N robust controllers, one for each wave

number, for the sub-systems (18) with (19).

4 Model Reduction and Controller Design

In this section we take a further step toward model
reduction. We derive a lower order two-dimensional
controller in two steps: First we construct a lower or-
der model of (18), and subsequently, we design a ro-
bust controller for the reduced-order model. To obtain
a lower order model, we transform (18) into Jordan
Canonical form. The matrices A, , By ,Cr , D, that
describe the dynamics of the reduced-order model are

obtained from the matrices in Jordan Canonical form
by retaining rows and columns corresponding to equally
well controllable or observable states. Hat denotes the
quantities associated with the reduced-order model.

Although a rigorous mathematical framework for the
design of disturbance attenuation (He) linear con-
trollers is provided by the control synthesis theory in
Refs. [8] and [9], for this initial study LQG (H2) syn-
thesis is quite adequate. In general, the design of a ro-
bust linear feedback controller for the LQG ('Hg) prob-
lem is divided in two parts: linear-quadratic-regulator
(LQR) and minimum variance estimator (Kalman-
Bucy filter). The LQR design provides an optimal con-
trol law in terms of the internal state vector by min-
imizing a cost function. The internal state vector is
essential to implement the control law but, in general,
it is not a physical quantity directly measurable, but
reconstructed from the measurement vector z, by the
estimator. The result of the LQG (H2) design of a
robust controller based on the reduced-order model of
(18) is summarized by the following equations:

u, =-K, &, , (20)

dz.,
dt

= Ar T, +ﬁr Up +ilr [zi' ‘ér Z, =D, u, ],
(21)
with initial conditions . (0) = 0 . Equation (20) is
the control law. The gains matrix K, is obtained by
minimizing the following optimal performance index:

. o At
Jo= lim [ [2* 2 +ul Wr W, u.ld, (22

ty—o0 fy

where 2, = C, &, + D, u, . Equation (21) is the
the minimum variance estimator. The matrix L. is
obtained by minimizing the variance of the estimated
state vector &, with respect to the internal state vec-
tor #, assuming that the reduced-model of (18) is af-
fected by additive Gaussian white noise. Since we have
assumed no statistics, the power spectral densities re-
quired for the minimum variance estimator are chosen
as design parameters in order to keep the eigenvalues
of the estimator at the same order of magnitude as the
eigenvalues of the controller. In particular, the spectral
density for process noise is chosen as pB, B, , where
the parameter p is increased to obtain the desired loop
transfer recovery of the full state LQR problem [11]. In
this study the LQG (2) design of a robust controller
for each reduced-order state space subsystem (18) can
be carried out in parallel.-

Figure 1 links with simplicity the mathematical for-
mulation to its computational implementation by sum-
marizing in a block diagram the control strategy de-
scribed above. The controller can be programmed in
a computer routine whose input is a matrix contain-
ing the gradients of the streamwise velocity component
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Figure 2: Comparison of the time evolution of the energy
of a two-dimensional finite amplitude distur-
bance and of a three-dimensional infinitesimal
disturbance at Re = 1500 in the controlled and
uncontrolled cases.

and whose output is a matrix containing the blowing
and suction at the wall. Each column of the measure-
ments matrix contains the gradients of the streamwise
velocity component in a given xy-plane. Each column is
processed in parallel by a fast Fourier transform (FFT)
and converted into z, ’s. Each pair of estimator (21)
and control (20) blocks is integrated in time by, for ex-
ample, a third-order low-storage Runge-Kutta scheme.
Parallel computation produces us ’s. An inverse FFT
converts u, ’s into the columns of the matrix contain-
ing the blowing ani suction at the wall. This rou-
tine can be embedded in any Navier-Stokes solver able
to handle time-dependent boundary conditions for the
control of three-dimensional channel flows.

Figure 1 also provides the basic architecture for the
potential implementation of the present controller in
practical engineering applications. The gradients of
the streamwise velocity component can be measured
by micro-electro-mechanical-systems (MEMS) hot film
sensors [13]. For each xy-plane, analog to digital con-
verters (A/D) and digital signal processors (DSP) con-
vert the measured gradients into z, ’s. Each pair
of estimator (21) and control (20) blocks is replaced
by a microprocessor, and a parallel computation pro-
duces u, ’s. A DSP and a digital to analog converter
(D/A) produce the actuating signal in each xy-plane.
Finally, MEMS technology will provide the necessary
hardware to implement the actuating signal at the wall
of the channel. Note that a variety of actuators can
mimic small amplitude blowing and suction at the wall:
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Figure 3: Comparison of the time evolution of the skin-
friction drag in a fully developed turbulent
channel flow at Re = 1700 in the controlled
and uncontrolled cases.

porous walls, micro pumps, deformable walls and ther-
mal actuators [13].

5 Results

We designed a controller for two-dimensional Poiseuille
fiow in a periodic channel of length L = 47 at Re =
1500 [10]. We used a grid resolution of N = 32
and M = 65. A controller is applied to each xy-
plane, consequently, the order of the full system is
32 x 3904 = 124928. Using the model reduction tech-
nique previously described, we created 32 reduced mod-
els and derived 32 controllers of order 12, one for each
state space subsystem (18). Controllers operate in par-
allel. The combined order of the controllers for all 32
wave numbers is 32 x 384 = 12288, it represents a dra-
matic reduction, about 90%, with respect to the order
of the full system. '

Figure 2 shows a comparison of the time evolution of
the energy of a two-dimensional finite amplitude distur-
bance and of a three-dimensional infinitesimal distur-
bance at Re = 1500 in the controlled and uncontrolled
cases. In the uncontrolled case at this Reynolds num-
ber, two-dimensional disturbance wave-number, and
initial energy level, we see the two-dimensional dis-
turbance decaying slowly. On the other hand, the
three-dimensional disturbance is seen to gain energy
rapidly. Orszag and Patera [14] showed that the two-
dimensional instability acts as a mediator for trans-
fer of energy from the mean two-dimensional flow to
the three-dimensional disturbances which may cause
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transition to turbulence. In the controlled case we
apply blowing and suction only at the bottom wall,
while near-wall disturbances within the top boundary
layer are left free to evolve. The attenuation of the
finite-amplitude two-dimensional disturbance is dra-
matically increased. As a consequence, the infinites-
imal three-dimensional disturbance is also stabilized
and the mechanism responsible for transition to tur-
bulence is inhibited.

Figure 3 shows a comparison of the time evolution of
the averaged skin-friction drag measured at the walls in
the controlled and uncontrolled cases at Re = 1700. In
both cases, the fully developed turbulent chanrel flow
is left free to evolve up to time t = 25 to ensure that the
statistics are correct. In the uncontrolled case the aver-
aged drag oscillates stochastically around a mean value
of 125.8. In the controlled case blowing and suction is
applied to top and bottom walls. All 64 controllers op-
erate in parallel, 2 controllers for each xy-plane. Only
the 4 lowest wave-numbers are controlled. In this case
the order of the controller is 64 x 48 = 3072, it repre-
sents a dramatic reduction, about 99%, with respect to
the order of the full system 64 x 3904 = 249856. The
controlled averaged drag drops as soon as the blowing
and suction is applied at the wall. The drag reduction
is further improved along the simulation, it oscillates
around a mean value of 114.1. The averaged drag re-
duction is about 10%. This preliminary result is very

. encouraging and justifies the current efforts for deriving
improved low order controllers.

6 Conclusions

In this article we presented a successful application
of robust reduced-order linear feedback control hased
on a two-dimensional design to a three-dimensional
channel flow in the transitional and fully ‘urbulent
regimes. A controller based on a reduced-model of
the linearized Navier-Stokes equations, i.e. 10% of the
order of the full size system, was designed by using
LQG (H3)/LTR synthesis. This controller was pro-
grammed in a computer routine whose input measure-
ments are the gradients of the streamwise velocity com-
ponent and whose output controls are the blowing and
suction at the wall. This routine, suited for parallel
computing, was embedded in a direct numerical simu-
lation of the Navier-Stokes equations. First, we applied
the controller to the bottom wall of a three-dimensional
transitional periodic channel flow at Re = 1500. The
controller attenuated dramatically the finite-amplitude
two-dimensional disturbance, and consequently stabi-
lized the three-dimensional infinitesimal disturbance
and inhibited the mechanism responsible for transi-
tion to turbulence. Subsequently, we applied the con-
troller at both wall of a fully developed channel flow at
Re = 1700. Only the 4 lowest wave-numbers are con-
trolled, reducing the order of the controller to about

1% of order of the full size system. Preliminary result
showed a drag reduction of about 10% with respect to
the uncontrolled turbulent flow. Extensions of LQG
(H2)/LTR design by using three-dimensional channel
flow models are in progress.
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Abstract

A-robust reduced-order linear feedback controller is designed and applied to turbu-
lent channel flow for drag reduction. From the linearized two-dimensional Navier-Stokes
equations a distributed robust feedback controller, which produces blowing/suction at
the wall based on the measured turbulent streamwise wall-shear stress, is derived us-
ing model reduction techniques and linear-quadratic-Gaussian/loop-transfer-recovery
control synthesis. The quadratic cost criterion used for synthesis is composed of the
streamwise wall-shear stress, which includes the control effort of blowing/suction. This
distributed two-dimensional controller developed from a linear system theory is shown
to reduce the skin-friction by 10% in direct numerical simulations of a low-Reynolds
number turbulent nonlinear channel flow. Spanwise shear-stress variation, not cap-
tured by the distributed two-dimensional controller, is suppressed by augmentation
of a simple spanwise ad hoc control scheme. This augmented three-dimensional con-
troller, which requires only the turbulent streamwise velocity gradient, results in further
reduction in the skin-friction drag. It is shown that the input power requirement is sig-
nificantly less than the power saved by reduced drag. Other turbulence characteristics

affected by these controllers are also discussed.




1 Introduction

Much atte;ltion has been paid to the drag reduction in turbulent boundary layers. Skin
friction drag constitutes approximately 50%, 90%, and 100% of the total drag on commer-
cial aircraft, underwater vehicles, and pipelines, respectively.! The decrease of skin-friction,
therefore, entails a substéntial saving of operational cost for commercial aircraft and sub-
marines. Recent reviews!™3 summarize achievements and open questions in boundary layer
control.

With the notion that near-wall streamwise vortices are responsible for high skin-friction
in turbulent boundary layers, Choi et al.4 manipulated the near-wall turbulence by applying
various wall actuations. They achieved a 20% skin-friction reduction in a turbulent channel
flow by applying a wall transpiration equal and opposite to the wall-normal velocity compo-
nent measured at y* = 10. This control is shown to effective'ly make the streamwise vortiées
weaker. However, it is.not easily implementable since it is difficult to place sensors inside
the flow field. Other attempts at weakening the near-wall streamwise vortices have been
made by imposing spanwise oscillation of the wall® and using external body force.® These
methods, however, require a large amount of input energy. Reduction in skin-friction must
be accompanied with the required input energy much less than the energy saved by the
reduction.

A systematic approach, not relying on physical intuition, has been tried in the past. A
suboptimal control, which determines the optimal control input by minimizing the cost
functional for a short time interval, was successfully applied to the stochastic Burger’s

equation.” Bewley and Moin® extended the suboptimal control to a turbulent channel flow.




This method, however, requires information about the whole flow field and excessive com-
putation, so that it is impossible or at best extremely difficul$ to implement. It is necessary
to develop a control scheme that utilizes easily-measurable quantities.

Lee et al.? developed a neural network control algorithm that approximates the correlation
between the wall-shear stresses and the wall actuation and then predicts the optimal wall
actuation to produce the minimum v‘alue of skin-friction. They also produced a simple control

scheme from this neural network control, which determines the actuation as the sum of the

dw

- weighted spanwise wall-shear stress, el Recently, Koumoutsakos!? reported a substantial
w

drag reduction obtained by applying a feedback control scheme based on the measurement
and manipulation of the wall vorticity flux. Furthermore, ‘he showed that the strength of
unsteady mass transpiration actuators can be derived explicitly by inverting a system of
equations.

Other systematic controls!!~141719-20 have been developed by exploiting the tools re-
cently developed in the control community.'®~!¢ Joshi et al!'~'* and Bewley and Liu'
developed an integral feedback controiler, a Linear Quadratic (LQ) controller, and an Heo
controller (worst case controller) to successfully stabilize unstable disturbances in transi-
tional flow. In particular, Cortelezzi and Speyer!” introduced the multi-input-multi-output
(MIMO) linear-quadratic-Gaussian (LQG)/loop-transfer-recovery (LTR) synthesis,’® com-
bined with model reduction techniques, for designing an optimal and robust linear feedback
controller. This controller successfully suppressed near-wall disturbances, thus preventing
transition in two-dimensional laminar channel flows. This robust reduced-order controller!®
was applied to two-dimensional nonlinear transitional flows, illustrating that the controller
designed from the linear model works surprisingly well in nonlinear flows.
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The purpose of the present study is to develop a realistic robust optimal controller that
systematically determines the wall actuation, in the form of blowing and suction at the
wall, relying only on measured streamwise velocity gradient to reduce skin-friction in a fully
developed turbulent channel flow. A dynamic representation of the flow field is required for
controller design. Due to the complexity and nonlinearity of the Navier-Stokes equations, it is
difficult to derive model-based controllers. Therefore, the linearized Navier-Stokes equations
for Poiseuille flow are used as an approximation of the flow field and form the basis of
system modelling. A robust reduced-order controller has been designed based on this model
and applied to linear and nonlinear transitional flows.}719-20 Encouraged by these results,
in this paper we apply ‘this distributed two-dimensional controller to a direct numerical
simulation of turbulent channel flow at a low Reynolds number. We then augment our two-
dimensional distributed controller by including an ad hoc control écheme to attenuate the
residual disturbances in the spanwise diréction.

In Section 2, we formulate the problem in terms of the three-dimensional Navier-Stokes
equations and provide details about the numerical scheme used to integrate them. In Section
3, we provide the motivation behind the approximate structure of the controller. Further-
more, we derive the state-space equations from the linearized two-dimensional Navier-Stokes
equations. In Section 4, we reduce the order of the state-space equations and derive a ro-
bust reduced-order two-dimensional controller by using LQG/LTR synthesis. In Section 5,
we construct and apply the distributed two-dimensional controller based on the linearized
Navier-Stokes equations to a fully developed furbulent channel flow at Re, = 100, where Re,
is the Reynolds number based on the wall-shear velocity, u,, and the half-channel height,
h. In Section 6, this distributed two-dimensional controller augmented with a simple ad
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hoc control scheme is applied to the same flow. In Section 7, we present some statistics

associated. with the controlled flows followed by conclusions in Section 8.
In this paper, we use (u,v,w) to represent the velocity components in the streamwise

(z), wall-normal (y), and spanwise (z) directions, respectively.

2 Mathematical Formulation

We consider the unsteady incompressible flow in a channel with half-height A and centerline
velocity U,. Non-dimensionalized by U, and h, the governing equations are given by the

Navier-Stokes and continuity equations,

Uy + Uy + VU, +wu, = —py+ Re A,
vy + uvg +vvy +F WV, = —Ppy+ Re’lAv,‘ , (1)

wy + uwg + vwy +ww, = —p;+ Re lAw,
U +vy, +w, = 0, (2)

where A = 0%/0z2 + 82 /8y? + 0%/82* and Re = Yt is the Reynolds number.
We apply blowing and suction at the top and bottom walls of the channel to suppress

near-wall turbulence within the boundary layer. The corresponding boundary conditions are

u(z,y = £1,2,t) = w(z,y = %1,2,t) =0,

v(z,y = %1, 2,t) = v1u(z, 2, 1). (3)

The control functions v, prescribe the amount of blowing and suction at the top and bottom

walls.




We measure the gradient of the streamwise velocity along the walls at given points (4, zj)

to detect near-wall disturbances within the boundary layer. In other words, we measure
z(xh 25 t) = uy|$=ri,z=2j,y=ﬂ=1' (4)

Time-dependent incompressible Navier-Stokes equations (1)-(3) with the appropriate initial
condition are integrated numerically by using a spectral code with a computational domain
of (47,2,%) and a grid resolution of (32,65,32) in the (z,y,z) directions. The numerical
technique used in this study is essentially the same as that of Kim et al.?! except that the
time advancement for the nonlinear terms is a third-order Runge-Kutta (RK3) method. The

second-order accurate Crank-Nicolson (CN) method is used for the linear terms.

3 Derivation of the State-Space Equations

One of the goals in the present study is to reduce the size of the controller. The controller
based on the full system would have > 10° states when the Navier-Stokes equations ére
written in the wall-normal velocity and wall-normal vorticity (v,w,) form with 32 Fourier
modes in the streamwise and spanwise directions and 65 Chebyshev modes in the wall-normal
direction. A controller with hundreds of thousands of states is of no practical interest in
engineering applications because of the amount of hardware and compﬁter power necessary
to compute a real-time control law. Consequently, it is crucial to reduce the order of the
controller.

~ Figure 1 presents the architecture of the controller tested in this study. In order to
reduce the order of the controller, we slice the channel with 32 zy-planes equally spaced in
the z-direction. We then construct the distributed two-dimensional controller by applying
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the two-dimensional controller developed from the linearized two-dimensional Navier-Stokes
equation!” to each plane. The two-dimensional controller has been shown to reduce the
skin-friction drag caused by finite amplitude disturbances in a two-dimensional channel flow
at Re = 1500.%

In this section we outline the derivation of the state-space equations in a given zy-
plane.1”!® The wall transpiration is applied to both top and bottom walls in a fully developed
turbulent channel low. For simplicity, though, we derive the state-space equations assuming
that blowing and suction is applied only at the bottom wall. The application of blowing and
suction to both walls is a trivial extension.

We consider two-dimensional incompressible Poiseuille flow in a periodic channel of
streamwise length, L., and channel height, 2. The undisturbed velocity field has a parabolic
profile with centerline velocity U.. We linearize the two-dimensional Navie;—Stokes equations

about the parabolic profile and rewrite them in terms of the perturbation stream-function,

Y,
(8, + Ud,) Ap — U"tp, = Re DAY, (5)

to eliminate the continuity equation.
To suppress perturbations evolving within the bottom boundary layer, we apply blowing
and suction at the bottom wall (see Fig. 1). For simplicity, we assume that the actuators

are continuously distributed. The corresponding boundary conditions are
'd)::ly:—l = —Uw(xat), 'wyly::l:l = ¢|y=1 =0, : (6)

where the control function v, prescribes the amount of blowing and suction at the bottom
wall. We impose the wall transpiration of zero net mass-flux.
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To detect the near-wall disturbances, we measure the gradient of the streamwise distur-

bance velocity at given points z = z; along the bottom wall (see Fig. 1)

2(zi,) = Yyyly=-1- (7)

In other words, we measure the first term of the disturbance wall-shear stress, 7y =
Re™! (yy = Yz2)l 1 The second term of the wall-shear stress is zero in the uncontrolled
case and is known in the controlled case.

We define a performance index J, or cost criterion, to design a controller for the LQG
(H2) problem. Since we are interested in suppressing the disturbance wall-shear stress, 7yz,

we define

_, dzdt. (8)

7=pm [ i),

The integrand represents the cost of the disturbance wall-shear stress, 7y, being different
from zero. Moreove;? the integrand implicitly accounts for the cos;t of implementing the
control itself. There are two reasons to minimize the cost of the control. In any engineering
application the energy available to arive the controller is limited, and a large control action
may drive the system away ffom the region where the linear model is valid.

To convert Eqs. (5-7) to a set of first-order ordinary differential equations, we make a
few transformations. We write the stream-function as 1) = ¢ + x to embed the actuator into
the evolutioﬁ equation and to make the boundary conditions homogeneous. Substituting

¥ = ¢ + x into Eq. (5), we obtain a forced equation for the Poiseuille flow:
(8, + Ud,) A — U"¢, = Re ' ANG — (8 + Udp) DX + U'xz + Re™'AAY, (9)

with homogeneous boundary conditions Ply=t1 = @yly=t1 = 0. The forcing function X

9




satisfies the nonhomogeneous boundary conditions, Eq. (6), e, Xzly=—1 = —vu(z,1),
Xzly=1 = Xyly=t1 = 0. We also substitute ¢ = ¢ + X into,;Eqgs. (7-8). The measurement

equation (7) becomes
2(zi,t) = (Byy + Xao) lo=ziy=-15 (10)
while the cost criterion, Eq. (8), takes the following form

. ty L .
T=im [ [(Gu+xw)* + Xoly=-rdodt. (1)

ty—o0
Subsequently, flow quantities are spectrally decomposed by using periodic functions in the

streamwise direction and Chebyshev polynomials in the wall-normal direction. We expand

¢ and x as
¢ = i i[anm(t) cos(anz) + bnm(t) sin(0,z)|Cm (¥), (12)
N A
X = ;[pn () cos(anz) + gn(t) sin(anz)]D(y), . (13)

where o, = 27n/L,. Functions Cp, and D(y) are combinations of Chebyshev polynomials
constructed to satisfy the boundary conditions, i.e., Cm(£1) = C. (+1) =D(1) =D'(£1) =

0 and D(—1) = 1. We also expand the measurement function z as follows:
N
2= [en(t) cos(anz) + dn(t) sin(anz)]. (14)
n=1

Substituting the expansions, Eqs. (12-14), into Egs. (9-10), and applying Galerkin projec-

tion, we obtain the system and measurement equations from Egs. (9) and (10), respectively,

%:Ay+B1u+B2

du
dt’

z=Cy+Dgu, (15)
where ¥ = (310, G130, D10 -+» LM -+ GNOs -+ GNM, DN0, -, bym]” and u = [p1, @1, - PNy AN
Note that matrices are obtained from the orthogonality of periodic functions and Chebyshev

polynomials.2
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To transform the above equations into a standard state-space form, we define a new
vector x = y + Bou, and two new matrices, B=B1 + A B2 and D = D3 + C B,. Finally,

we obtain the state-space equations

%)—;—=Ax+Bu, z=Cx+Du, (16)

with the initial condition x(0) = Xo, where x is the internal state vector, u is the control
vector, and z is the measurement vector. Matrices A, B, C contain the dynamics of the
Poiseuille flow, actuators and sensors, respectively. Matrix D contains the coupling between

sensors and actuators. The cost criterion, Eq. (11), becomes

. t | |
J=1lim [[2F z+uT WT W u] dt, (17)

tf—o0 Jt

where the superscript 7' denotes a transposed quantity. The matrix W is obtained by
spectrally decom;;osing the last term in the cost criterion, Eq. (11). |
The advantage of the present formulation is that the whole problem decouples with
respect to the wavenumber when Egs. (16-17) are transformed into Fourier spa~e in the
streamwise direction. All matrices in Egs. (16-17) are block diagonal. The biock diagonal
structure of the matrix A was first recognized by Joshi et al.}2 The above state-space system
is consequently équivalent to N state-space sub-systems, one for each wavenumber. For a

given wavenumber, «, the state-space equations are

dXo

dt =A,Xg+ By Uy, Zo= Ca Xq + Dq uq, (18)

with the initial condition Xq(0) = Xa0. Vectors X, Ua, Zo have the following structures:

Xa = [fa0; -+s Bads ba0s -+ bar]T s Ua = [Pas %]T s Za = [Car da]T, where * indicates the Fourier
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coefficients that have been affected by the transformation. The cost criterion also decou-
ples with respect to the wavenumber, and we obtain N performance indexes. For a given

wavenumber, «, the cost criterion is defined as

t
Jo = lim f[zz Zo + ul WI W, u,] dt. (19)

tg—o00 Jt
Consequently, the design of a robust two-dimensional controller for the system, Eq. (16),
with a specified cost criterion, Eq. (17), has been reduced to the independent design of N

robust single-wavenumber controllers for the sub-systems, Eq. (18), along with Eq. (19).

4 Model Reduction and Controller Design

In this section we derive a lower order two-dimensional controller in two steps.!” First, we con-
struct a lower order model of Eq. (18), and subsequently, design a robust single-wavenumber

controller for the reduced-order model. To obtain a lower order model, we transform Eq.

~(18) into a Jordan canonical form. The matrices A,, B,, Ca, D, that describe the dynamics

of the reduced-order model are obtained from the matrices, A,, By, Co, Do in the Jordan
canonical form by retaining rows and columns corresponding to equally well controllable and
observable sfates. The hat denotes the quantities associated with the reduced-order model.

Although a rigorous mathematical framework for the design of disturbance attenuation
(Hoo) linear controllers is provided by the control synthesis theory,'~18 for this initial study
LQG(#,) syhthesis is quite sufficient. In general, the design of a linear feedback controller
for the LQG(?#s) problem is divided into two parts: linear-quadratic-regulator (LQR) and
minimum variance estimator (Kalman-Bucy filter). The LQR design provides an optimal
control law in terms of the internal state vector by minimizing a quadratic performance
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index. The internal state vector is essential to predict the optimal control input. However,
it is very difficult or impossible, in general, to directly obtain this internal state vector.
Therefore, it should be reconstructed from the measurement vector z, by an estimator. The
result of the LQG(H,) design of a single-wavenumber controller based on the reduced-order

model of Eq. (18) is summarized by the following equations:

u, = -K, %, (20)
d&a i . e . o
Et— = Aaxa + Baua + La[za - Caxa - Daua]? (21)

with initial conditions %,(0) = O, where X, is the estimated reduced-order internal state
vector. Equation (20) is-the control law. The gains matrix K, is obtained by minimizing

the following optimal performance index:

-

| |
F = lim / 18T 2 +ul WI W, g dt, ' (22)
t .

ty—ro0

where %, = Cq %o + Do U, and X, is the reduced-order internal state. Equation (21)Ai.s
the minimum variance estimator. The matrix L, is obtained by minimizing the variance of
the error between the estimated reduced-order intérnal state and the reduced-order internal
state vectoré assuming that the reduced-model of Eq. (18) is affected by additive Gaus-
sian white noise. Since we have assumed no statistics, the power spectral densities required
for the minimum variance estimator are chosen as design parameters in order to keep the
eigenvalues of the estimator at the same order of magnitude as the eigenvalues of the con-
troller. In particular, the spectral density for process noise is chosen as pﬁa ]§’£, where the
pafameter p is increased to recover approximately the loop. transfer matrix of the full state

LQR problem.!8 In this study the LQG(Hz) design of robust single-wavenumber controller
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for each reduced-order state-space sub-system, Eq. (18), can be carried out independently
and computed in parallel.

Figure 1 links the mathematical formulation to its computational implementation by
summarizing in a block diagram the control strategy described above. The two-dimensional
distributed controller can be programmed in a computer_routine whose input is a matrix
containing the gradients of the streamwise velocity component and whose output is a matrix
containing the blowing and suction at the wall. Each column of the measurement matrices
contains the gradients of the streamwise velocity component in a given zy-plane. Each
column is processed in parallel by a fast Fourier transform (FFT) and converted into zq’s.
Each single-wavenumber controller, Egs. (20-21), is integrated in time by, for example, a
third-order low-storage Runge-Kutta scheme. The u,’s are computed in parallel. An inverse
FFT converts u,’s into the columns of the matrix containing the blowing and suction at
the wall. This routine can be embedded in any Navier-Stokes solver able to handle time-
dependent boundary conditions for the control of three-dimensional channel flows.

Figure 1 also provides the bacic architecture for the potential implementation of the
present distributed two-dimensional controller in practical engineering applications. For
instance, the gradients of the streamwise velocity component can be measured by micro-
electro-mechanical-systems (MEMS) hot-film sensors.?® For each zy-plane, analog-to-digital
converters (A/D) and digital signal processors (DSP) convert the measured gradients into
z.'s. Each single-wavenumber controller, Egs. (20-21), is replaced by a mMicroprocessor,
and a parallel computation produces u,’s. A DSP and a digital-to-analog converter (D/A)
produce the actuating signal in each zy-plane. A variety of actuators, such as synthetic
jets, micro-bubble actuators, and thermal actuators, can mimic small amplitude blowing
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and suction at the wall.?®

5 Performance of a Two-dimensional Controller

We designed a distributed two-dimensional controller in two steps. First, we designed
reduced-order controllers for two-dimensional Poiseuille flow iﬂ a periodic channel of stream-
wise length L = 47 at Re = 5000, which has the same mean wall-shear stress as turbulent
channel flow at Re, = 100. Subsequently, we fine-tuned single-wavenumber reduced-order
controllers in order to minimize the magnitude of the Fourier coefficients of the wall-shear
stresses in turbulent char}nel flow at Re, = 100. We used N = 32 and M = 60 in this
linear model flow. Controllers operate at both top and bottom walls in parallel. .If the
two-dimensional controllers without model reduction were applied at each z-plane, then the
order of the ensemble of controllers would be 64 x 3904 = 249856. Using the model re-
duction technique previously described, we designed eight single-wavenumber controllers of
order 12, corresponding to the eight lowest wavenumbers. Since we use the eight lowest
single-wavenumber controllers in our simulation, the c;'n;i:)ined order of the controllers is
64 x 96 = 6144. It represents a state-space reduction of about 97.5%, with respect to the
full-order system.

Figure 2 shows the time history of the drag in the uncontrolled and controlled flows.
Drag is measured by the mean value of the wall-shear stresses averaged over each top and
bottom wall. This two-dimensional control yields about a 10% drag reduction. Choi et al*
reported that the in-phase u-control measured at y* = 10 also gives a 10% drag reduction.

This in-phase streamwise velocity at the wall causes a similar effect, -‘fiiy'|w ~ 0, which is the
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to-be-minimized target of our cost criterion in our two-dimensional controller. Note that
this observed drag reduction is a by-product since our controller is designed to suppress the
fluctuations of the streamwise wall-shear stress, not the mean wall-shear stress. Note also
the sudden drop in the drag as soon as the controller is switched on at ¢ = 25. This transiént
phenomena is also observed in other studies.?~°

Figure 3 compares the magnitude of Fourier coefficients of the wall-shear stresses in the

controlled and uncontrolled flows. The wall-shear stresses are measured at the bottom wall

~ at a given spanwise location. Figures 3(a) and (b) show the comparisons corresponding to

wavenumbers k; = 0.5 and k, = 1.0, respectively. Both figures show an order-of-magnitude
reduction between the controlled and uncontrolled cases. The magnitude of the Fourier
coefficients of wall-shear stress decreases very quickly as soon as the controller is activated
at t = 25. These results indicate that our distributed two-dimensionél linear robust reduced-
order controller suppresses disturbance wall-shear stress surprisingly well even in a fully
developed turbulent flow. The high wavenumber components of the wall-shear stress in Fig.
3(c) do not show any reduction since iny the lowest eight single-wavenumber c\ontrollers
(up to k, = 4.0) are used in the control of flow. Examinations of other spanwise locations
show similar results.

Contours of the disturbance wall-shear stresses at the bottom wall in the controlled and
uncontrolled flows at t = 30 are shown in Fig. 4. Contours for the uncontrolled flow show the
usual elongated regions of low- and high-shear stress. Note that contours for the controlled
flow show the dramatic effect of the distributed two-dimensional controller. The long streaky
wall-shear stress region spans almost the entire streamwise direction, indicating that the low
wavenumber components are completely suppressed, which is consistent with Fig. 3. The
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remaining spanwise variations, i.e., the alternaﬁng regions of high- and low-shear stress,
are due to the fact that the two-dimensional controllers distributed along the streamwise
direction are operated independently from one z-plane to another.

The above results demonstrate that our distributed two-dimensional controller designed
from the linear model works surprisingly well in suppressing near-wall disturbances in the
fully developed turbulent flow. Reduction of fluctuating wall-shear stress led to drag re-
duction. However, this distributed two-dimensional controller has a limited impact on the
total drag since it cannot control the spanwise variation of the wall-shear stress. In the

next section an augmentation to the distributed two-dimensional controller is presented and

implemented.

6 An Augmented Three-dimensional Controller

In the previous section, successful control of fully developed turbulent channel flow has
been obtained by applying a distributed two-dimensional controller. However, it has been
observed that this controller does not take into account the spanwise variations of fluid
motion. An augmentation to the distributed two-dimensional controller that accommodates
the three-dime'nsional characteristics of a fully developed turbulent flow is developed in this
section.

A simple ad hoc control augmentation scheme is introduced in an attempt to capture
the remaining spanwise variations of the controlled flow. This additional control, which

generates blowing/suction to attenuate the spanwise variation of the wall-shear stress, is
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given as follows:

Ju ‘
’Uad(Z) =C (é—y- w) y (23)

* are the streamwise velocity gradients averaged over the zz-plane and
w

(2:2) . Ou
By

w

QH ($,Z) a_u
where B |y and By

the z direction, respectively, and C is a constant to be adjusted for the best performance.
The subscript ad indicates the ad hoc control, and v, is a function of only 2. Therefore, the

new control input is defined by
Uy(Z, 2) = Vaa + Va4, (24)

where vyg is the actuation velocity generated by the distributed two-dimensional controller
used in the previous section.

Using the distributed two-dimensional controller augmented with this ad hoc control
scheme, the control of the fully developed turbulent flow with Rei, = 100 increased drag
reduction to about 17% as shown in Fig. 5. As before, the turbulent flow is left free to evolve
without any wall actuation until ¢ = 25. As soon as the controller is activated at ¢ = 25,
the drag drups sharply within a very smallv time period. The constant, C, in Eq. (23) is
adjusted such that the root-mean-square (rms) value of the actuation is maintained at 0.1u,,
where u, is fhe wall-shear velocity for the uncontrolled flow. We have found empirically that
C between 0.05u, and 0.2u, gives similar performance. Introduction of this simple control
augmentation enhances the drag reduction, indicating that more sophisticated controllers
which best take into account the three-dimensionality of turbulent flow may produce even
more efficient suppression of skin-friction drag.

Figure 6 presents the comparison of contours of the disturbance wall-shear stresses at
the bottom wall between the ad hoc controlled flow and the uncontrolled flow at ¢ = 30.
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Compared to Fig. 4, additional effort in the spanwise direction, Va4, removes the pronounced
peak-valley variation of the wall-shear stress which is observed in the controlled flow with
the distributed two-dimensional controllers (see Fig. 4(b)). Note that the high wavenumber
components of the wall-shear stress are persistently sustained because of the lowest eight

single-wavenumber controllers adopted in the control of flow.

7 Turbulence Statistics

Some statistics of the flow field associated with the two éontrollers applied in this paper were
examined to investigate t}le effect of the controllers on turbulence. All statistical quantities
were averaged over a sufficiently long interval of time as well as over the planes parallel to
the wall. An overbar indicates a statistical quantity, while a prime is used for a fluctuating
quantity. For simplicity, the flows controlled by the distributed two-dimensional controlier
only and the distributed two-dimensional controller augmented with ad hoc control scheme
are called “2D-controlled” and “ad hoc-controlled” flows, respectively.

The mean velocity profiles uormalized by the actual wall-shear velocities are shown in
Fig. 7 for three different channel flows. These profiles show the same trend shown in Choi et
al.’s* drag-reduced flow: the slope of the log-law for controlled flows remains the same while
the mean velocity itself is shifted upward in the log-law region.

The root-mean-square values of turbulent velocity fluctuations are shown in Fig. 8 and
compared to those of the uncontrolled flow. Note that all quantities in this figure are nor-
malized by the wall-shear velocity of the uncontrolled flow. The controllers reduce the value

of turbulent intensity significantly throughout the channel. In particular, the reduction of
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these quantities in the ad hoc-controlled flow is greater than that in the 2D-controlled flow.
The increase in vyms very near the wall is due to the control input. A similar feature is
also observed by Choi et al. and Lee et al.? Both controllers mitigate the rms of spanwise
velocity fluctuation throughout the channel compared to that in uncontrolled flow. However,
the introduction of v, in Eq. (23) causes this value to iancrease very close to the wall, which
leads to the buildup of additional streamwise vorticity at the wall.

The change of the Reynolds shear stress, —u'v, is plotted in Fig. 9. The total shear
stress, —u'v' + (1/Re,)d4/dy, where Re, = u, h/v and ur, is the wall-shear velocity for
the uncontrolled flow, is shown in Fig. 9(a). The straight line of this total Reynolds stress
indicates that the flow has reached a statistically steady-state. The total shear stress is
reduced by the controllers. The Reynolds shear stress is reduced throughout the channel.
Note that the reduction for the ad hoc-controlled flow is greater ﬁhroughout the channel,
indicating the effect of the ad hoc controller is felt by the entire flow field.

Root-mean-square values of vorticity fluctuations for the controlled flows are compared
with those for the uncontrolled flow in Fig. 10. All cumbonents of vorticity fluctuations
are significantly reduced throughout the channel. Very close to the wall, the increase of
streamwise vorticity in the ad hoc-controlled flow is due to the streamwise vorticity built
at the wall by the thrlee-dimensional nature of the ad hoc controller. The high streamwise
vorticity at the wall slows the sweeping motion of high momentum fluid induced by the
streamwise vorticity away from the wall, thus resulting in a significant reduction in skin-
riction. A similar feature is also observed in Lee et al.® Note that the streamwise vorticity
at the wall for the 2D-controlled flow, however, is less than that for the uncontrolled flow.
The reduction of w, is a direct consequence of the controller, which was designed to reduce
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8’ /Bylw. The reduction of wy also indicates that our controllers weaken the strength of
near-wall streaks.

Figure 11 compares the streamwise vorticity fields in the uncontrolled and controlled
flows. The strength of the near-wall streamwise vorticity for the controlled flows are greatly
attenuated due to the wall transpiration produced by the controllers. The distributed two-
dimensional controller augmented by the ad hoc control scheme is able to diminish the
strength of the streamwise vorticity more substantially than the distributed two-dimensional
controller alone. This has also been observed by Lee et al.® While Lee et al.? suppressed
the streamwise vorticity field with the physical understanding that the control based on the
weighted sum of dw/dy|, can prevent the physical eruption at wall, the present distributed
two-dimensional controller attenuates the streamwise vorticity strength by minimizing the
streamwise disturbance wall-shear stress systematically. These results further support the
notion? that a successful attenuation of the near-wall streamwise vortices results in a signif-

icant reduction in skin-friction drag.

8 Conclusions

A reduced-order linear feedback control based on a distributed two-dimensional controller
design is applied to a turbulent channel flow. A controller based on a reduced-model of the
linearized Navier-Stokes equations for a laminar Poiseuille flow was designed by using LQG
(H2)/LTR synthesis. This controller was implemented using input measurements that are
the gradients of the streamwise disturbance velocity and output controls that are the blowing

and suction at the wall. This procedure, suited for parallel computing, was embedded in a
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direct numerical simulation of the Navier-Stokes equations.

First, we applied the distributed two-dimensional controller to both walls of a turbulent
channel flow at Re, = 100. Eight single-wavenumber controllers corresponding to eight low-
est wavenumbers, reducing the order of the controller about 2.5% of the o'rder of the full
size system, are applied to attain a skin-friction reduction of 10% with respect to the uncon-
trolled turbulent flow. Next, a siﬁple ad hoc augmented control scheme of the distributed
two-dimensional controller is introduced to capture the three-dimensionality of turbulent
flow. The control of fully developed turbulent flow by the distributed two-dimensional con-
troller augmented by the ad hoc control scheme produces a 17% reduction in skin-friction
drag. Motivated by this Tesult, we are currently developing controllers to more efficiently
account for the three-dimensionality of turbulent flow.

This study is carried out at low Reynolds number. Whether our 'controlle_r, based on the
reduced-order linear model, would work in other turbulent flows, should be drawn from real
experiments or simulations at high Reynolds number. However, we expect that it should
work equally well for high Reynolds number flow since our controller, derived from LQG/LTR
synthesis, recovers the robustness of LQR, whose characteristics has been partially tested
over the different Reynolds number flows.??

The statistics of controlled and uncontrolled flows are compared. " The mean velocity
profile is shifted upward in the log-region, a typical characteristics of drag-reduced flow.
Velocity and vorticity fluctuations as well as Reynolds shear stress are significantly reduced
due to the blowing/suction generated by controller. However, major change is confined to the
wall-region. Instantaneous flow fields show that the distributed two-dimensional controller
attenuates and modifies the streaky structure of the boundary layer. Streaks are observed
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to span the entire streamwise direction with velocity variations in the spanwise direction.
These variations are substantially reduced by the augmented controller.

The three-dimensional aspect of the distributed two-dimensional controller by the aug-
mentation of the ad hoc control further reduced the skin-friction drag. This three-dimensional
controller plloduces secondary streamwise vorticity at the wall, which slows the sweeping mo-
tions of high-momentum fluid induced by the streamwise vorticity away from the wall. This
induced retarding of the primary streamwise vorticity leads to additional drag reduction,
which was also observed in Choi et al.*

Regarding the scaling factor C in Eq. (23), we found an optimal value of C which yields
the blowing/suction of 0.Iu,. With this optimal C, the augmented controller generates wall
transpiration with an rms value of about 0.12u.. The required power input per unit area to
the system, Py vy + 0.50v3 =~ 0.1pul, is significantly less than the poWer saved from the drag
reduction, AC;/Cy7,U. = 3.2pu3, where Pw, p,Cf, Tw and U, are the wall pressure, density,
skin-friction coefficient, averaged wall-shear stress, and the centerline velocity, respectively.

Extensiois of LQG (H,)/LTR design by using three-dimensional channel flow models are

in progress.24=%
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Abstract

Robust reduced-order feedback control of near wall tur-
bulence of three dimensional Poiseuille flow in a pe-
riodic channel is investigated. Control of near-wall
disturbances is achieved through wall-transpirations,
and measurements of wall-shear stresses are fed back
to the controller.  Linear-Quadratic-Gaussian/loop-
transfer-recovery synthesis and model reduction tech-
_ niques are used to construct the robust feedback con-
trollers from the linearized three dimensional Navier-
Strokes equations. The quadratic cost function is com-
posed of the total wall-shear stresses. Using Galerkin's
method, the system, controller, and output are decom-
posed into a set of independent systems, controllers, and
outputs for each pair of streamwise and spanwise wave

numbers. This decomposition allows reduced-order con- -

trollers for each wave number pair to be implemented in
parallel. It is assumed that the controllers and sensors
will be distributed in fine enough resolution to provide
the measurements and control needed. This preliminary
study develops a controller for a single pair of wave num-
bers. The single wave number pair controller produces
closed loop poles that show a more rapid decay of distur-
bances than the open loop system.

1 Introduction

The reduction of drag produced by skin friction, or in
other words, the reduction of wall-shear stresses gener-
ated by near-wall turbulence, has received wide attention
in fluids research. Two near-wall flows which contributes
to drag are boundary layers that transition from lami-
nar to turbulent regimes and boundary layers that are
inherently turbulent. Thus, efforts at reducing skin fric-
tion fall into two categories: transition inhibition and
turbulence suppression. References [1-3] summarize re-
cent achievements and open questions in boundary layer
control.

A systems approach to boundary layer feedback con-
trol began recently with Ref [8). It has become
widely accepted that controllers capable of using a
distributed set of measurements and actuators can
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Figure 1: Controller architecture.

achieve better results. Recently, multi-input-multi-
output (MIMO) linear-quadratic-Gaussian (LQG)/loop-
transfer-recover (LTR) synthesis [4], combined with
model reduction techniques, was used to design robust
optimal linear feedback controllers from two-dimensional
Navier-Stokes equations These controllers are able to
both suppress disturbances leading to transition and to
return flows back to the laminar regime [4,5]. This pa-
per extends that the framework developed in Ref [4] to
linearized three-dimensional Navier-Stokes equations.

In Section 2, we formulate the problem in terms of the
three-dimensional Navier-Stokes equations. In Section 3,
we derive the state space equations from the mathemati-
cal formulations of Section 2. In Section 4, we reduce the
order of the state space equations and develop a robust,
reduced-order controller by using LQG synthesis. In Sec-
tion 5, we apply the controller developed to a single wave
number pair decomposition of a flow at Re = 10, 000 and
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discuss its performance. Section 6 closes the article with
some conclusions.

2 Mathematical Formulation

We consider the flow of an incompressible fluid in a three-
dimensional periodic channel of length Lzh, width L,h,
and height 2h as shown in Figure 1. It has a steady
Poiseuille velocity profile in the streamwise direction.
The evolution of the perturbation velocities in such a flow
is governed by the linearized Navier-Stokes equations:

(-2+U—q-)u+ U'v=-—gg+i-v2u,

\ ot oz 8z  Re
(-g—t + U%) v= —-g—z 2V, )
(2 +02)um-Zrire.
and the continuity equation:
%‘54 % + %w; =0, )

where u, v, and w are the perturbation velocities in the
z, y, and z directions respectively. ‘We make the problem
dimensionless by using h as the characteristic length and
h/U, as the characteristic time. U, represents the max-
imum mean flow at the center of the Poiseuille profile.
The Reynolds number is Re = Uch/v. The governing
equations (1) can be reduced to two equations depen-
dent only on the vertical components of the perturbation
velocity and vorticity, wy (e.g. Ref [7):

0 ) gr,_ FUL _ Lo,
(§+U5;)vv—dy28x = ReVVv, (3)
i) d 1 _, _ _dUdv
(Et--FUE;) w,,—EV wy = dy 5z . (4)

Blowing and suction is applied at the bottom wall to
suppress the near-wall disturbances. For simplicity, we
assume that the actuators are uniformly distributed. The
corresponding boundary conditions are:

UI = gg = wv‘ =0,
v=+ ay y==%1 y=tl (5)
vly=—1 =Vuw

where the control function v, represents the amount of
blowing and suction. With the linearity assumed for
the problem, v can be seen as the sum of two parts: &
© which satisfies the homogeneous boundary conditions
and a x which satisfies the non-homogeneous boundary
conditions. Thus we have that:

v=9+%, (6)
R ab 8x
vi - = —_— = W, | —21= A =0
y=%1 By _— Vig==1 By yetl ' (7)

XIv=1 =0 ' X|y=—1 =Vy .

Substituting the above into equations (3) and (4), x can
be seen as the input, or control function.

To determine the deviation of the boundary layer from
the laminar regime, we measure the gradients of the
streamwise and spanwise velocity components at points '
(z:,2;) along the bottom wall. For the current study, we
assume that the sensors are distributed in a way that pro-
vides an accurate measurement of the gradients. Thus,
the sensor output is defined as:

o
zu(zia 25,y t) = ?as

[}
z=z;,y=—1,2=2;

bw (8)
z,,,(z;,z_,-,t) = —a;

r=z;,y=—1,2=2;

In other words, we measure the first terms of the wall-
shear stresses, T,z = Re~}(0u/8y+dv/dz)| __, and
7,: = Re~1(8w/8y + 8v/82)| __,, respectively. Now, u
and w need to be defined in terms of v and wy. As noted
by Butler and Farrell [7}:

(32 N 62>u=éﬂ %

b2 ' 0z% 9z  Oz0dy '’ ©
&L N, By O
oz2 = 022 T 8r 020y

Once discretized as described in Section 3, we find that
u and w can be directly defined in terms of 9, X, and wy,.

Finally, we define a cost function, J, to use 1n LQG
synthesis. Since our objective is to suppress wall-shear
stresses, we define:

) ] / [ +((%;;);1((%—é;: ]did”idt -
t; Ly L. 2

The integrand represents the cost of the wall-shear
stresses being different from zero which includes the cost
of implementing the control. We have two primary rea-
sons for restricting the controller gain: In any engineering
application, there are physical limits to the control effort
the actuators may be able to supply; and a large control
action may drive the system away from the region where
the linear model is valid.

3 Derivation of the State-Space Equations

In order to apply linear control techniques, the governing
equations need to be put into state space form. Follow-
ing the framework presented in Ref (8], we use complex
Fourier series to discretize the relevant flow properties
and then apply Galerkin’s method to obtain the desired
state space vectors and equations. -

The two fiow properties, ¢ and wy, and the input func-
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tion, X, are spectrally decomposed by Fourier expansions:

1 . .
A _ T (za,.z-{-sﬁmz)
v= ) E (anml(t)e )Fl(y) s (11)
n,m,l
1 , .
_ = (ianz+iBmz)
“w=32 (samie )T, (12)
(13)

X = % Y. (pnm(t)e(""""*“”"’)) =(v) -
nm

where the summation subscripts are defined as fol-
lows: the streamwise wave number n = —N/2,...,-1,
1,...,N/2, the spanwise wave number m = —M/2,...,
-1,1,...,M/2, and the Chebyshev polynomial index
0,...,L. For both the streamwise and spanwise
expansions, the 0 wave number is omitted since it repre-
sents the mean perturbation values, which are set to zero.
on = 32 is the streamwise wave number, and B = 32
is the spanwise wave number. The I} (y) and Ti(y) are
combinations of Chebyshev polynomials chosen to satisfy
the boundary conditions: Ii(y) = Di(xy) = Tu(zxy) =
0. Z(y) is & function constructed to satisfy the boundary
conditions: E(—1) = 1 and E(1) = Z/(£1) = 0 of the
input function.

l =

The measurements are similarly expanded:

_a_u. = _1_ (ianz+iBmz)

oy 2 :1-:1 (atm(t)e | ) »
dw _1 (tanz+ifm?)

% = 2§(a':m(t)e e+in2))

Consequently, the (8%/9z® + 8%/8z*) operator of equa-
tions (9) becomes (a2 + BZ,). This allows for the coeffi-
cients a¥,(t) and a¥, () to be defined directly in terms
of the coefficients @nmi(t); dnmi(t), and Pnm(t) of equa-
tions (11) - (13).

To construct the state space equations, we substitute (11)
- (14) into equations (3), (4), (6), (8), and (9). Then
by Galerkin's method, the coefficients are collected into
first-order dynamic system and measurement equations.
Stacking both the real and imaginary parts of the coeffi-
cients as elements of the state, input, and output vectors,
equations (3) and (4) can be represented es:

. Al.d_g = A2§+Blﬁ'+32‘ég s F=Cy§+ D3t . (15)
dt dt
These equations are then transformed into standard
state-space form by making some substitutions: £ =
7 — AT'Byii, B = A7'B; + AgA7'By, and D = D3 +
CAIlBg. Thus,  becomes the internal state, 4 the con-
trol vector, and Z the measurement vector to produce:
dz

= =AZ+Bi, £=Ci+Di. (16)

with initial condition £(0) = Zo. Similarly, the cost func-

tion (10) becomes:

J= lim

ty—o0

ty
/ (F7+ TWWadt ,
t.

4

17

where the superscript * denotes the transpose.

Cast into state-space form, the full system decouples
with respect to pairs of wave numbers (n, m) where
n=1,...,N/2and m = -M/2,...,-1,1,...,M/2. All
the matrices in (16) and (17) are block diagonal consis-
tent with the two dimensional block diagonal structure
found in Refs [4,5,8]. The above system (16) is equiva-
lent to 2NM state-space sub-systems. one for each wave
number pair. For a given pair of wave numbers nm, the
state space system is:

dZnm
dt
znm = CZnm + Dﬁ:ﬂm )

= AZnm + Biinm , (18)

with initial condition Znm(0) = Znmo. Vectors Tpm,
@pm, and Znm have the following structure: Tam =

Rt? Rt It It Rt Rt
[‘}f}.moa cot 3 QpmIrGnm0s """ 0 GnmL ban’ AR bnmLy :
- - — ™ s -
bamgs* " " » y Unm = nmtPrnml + #nm =

bn:ngl
(iR, avl,aZ R apl]*, where R and I indicate the
real and imaginary values of the coefficient and /
indicates that the coefficients have been modified by the

matrix substitutions that produced equation (16).

The cost function also decouples into a sum of 2N M per-
formance indices. The performance index for one wave
number pair, nm, is: :

ts
J= lim / R 52 S + T Wi Wemnm] dt,  (19)
f—'w t; . .

where R is a scalar value. Consequently, the design of a
robust controller for the system (16) and (17) has been
reduced to the design of 2N M independent robust con-
trollers, one for each pair of wevs uumbers. In each sub-
system (18) and (19), the control vector has only 2 ele-
ments and the measurement vector 4.

Teking & closer look at the A matrix of (16), we see
that it can be partitioned into four blocks, each of size
(L +1) x (L+1). Block A;z (upper right corner) is
identically zero, while A;; produces the Orr-Summerfeld
modes and Age produces the Squire modes. The Cou-
pling operator, Az; has been shown to produce significant
energy amplification for certain wave numbers [7.

4 Model Reduction and Controller Design

A challenge of this study is to reduce the size of the con-
troller. A controller based on the full system derived from
equations (3) and (4) with N =32, M =32,and L = 65
would have more than 10° states. A controller with hun-
dreds of thousands of states is of no interest in engineer-
ing applications because of the amount of hardware and
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computing power necessary for real-time control. Conse-
quently, it is crucial to reduce the order of the controller.
We derive a lower order controller in two steps. First,
we construct & lower order model of (18), and then, we
design a robust controller for the reduced-order model.

To lower the order of the model, we first transform
the system (18) into Jordan Canonical form. We find
the minimal realization of the system by eliminating all
states associated with the unobservable and uncontro}-
lable modes. The less observable and less controllable
modes are then removed to‘obtair‘x a reduced-order sys-
tem. The matrices Anm, Bnm) Cnm, Dnm and vector
Znm represent the reduced-order model.

Although a rigorous mathematical framework for the de-
sign of disturbance attenuation (Hoo) linear controllers
is provided by control synthesis theory in Refs [9, 10},
for the current study LQG (Hz) synthesis is adequate.
The controller design is divided into two parts: linear-
quadratic-regulator (LQR) and minimum variance esti-
mator (Kalman-Bucy filter). The LQR design provides
an optimal control law in terms of the internal state vec-
tor by minimizing a cost function. However, since the in-
ternal state vector is not directly measurable, it is recon-
structed from the measurement vector by an estimator.
The result of the LQG (Hz) design based on the reduced-
order model of the wave number pair sub-system (18) is
summarized as:

(20)

U= “Knm Znm »

dZ P A
dn.m = ApmZam + Brmiinm
b ) (21)
+ Lum [Zm = Camam = Damam|

with initial conditions Znm(0) = (-)'; Equation (20) is
the control law. The gain matrix Knm is obtained by
minimizing the performance index (19). Equation (21)
is the minimum variance estimator. The matrix Lnm
is the Kalman Filter gain assigning some value for the
power spectral densities of the process and measurement
noises. Since we have assumed no statistics, the power
spectral densities are chosen as design parameters in or-
der to keep the eigenvalues of the estimator at the same
order of magnitude as the eigenvalues of the controller.
In particular, the spectral density for process noise is cho-
sen as pBpm By, Where the parameter p is increased to
obtain the desired loop transfer recovery of the full state
LQR problem [6]. However, to move the eigenvalues to
the left, an experimental weighting is also used [11).

Figure 1 shows how this mathematical formulation can
be implemented either as a computational simulation or
a mechanical system. The controller can be programmed
in a computer routine whose input are matrices contain-
ing the gradients of u and w and whose output is a matrix
containing the blowing and suction at the wall. The sen-
sor matrix is processed by a two dimensional fast Fourier
Transform (FFT) algorithm and converted into Znm's,

which are inputs to the compensator. Parallel compu-
tations produces the @nm's, and an inverse FFT process
converts the finm into the columns of the matrix contain-
ing the blowing and suction at the wall. This routine can
be embedded in any Navier-Stokes solver able to handle
time-dependent boundery conditions for the control of
three-dimensional channel flows.

5 Results

We designed & controller for a single wave number pair

- decomposition of three-dimensional Poiseuille flow in a

periodic channel of length L, = 4m and width L; = 47 /3
at Re = 10,000. We considered only the wave num-
bers n = 1 (streamwise wave number) and m = 1
(spanwise wave number) with 125 Chebyshev polynomi-
als (L = 124). Consequently, the full system (16) and the
wave number pair sub-system (18) are identical. Even
so, the order of the system is 500 x 500. Also, the sys-
tem as described above produces no unstable eigenvalues.
Therefore, our objective was to develop a controller that
moves the least stable pole of the minimal realization to
the left without making the closed loop system unstable.

Using the model reduction method described in Section 4,
a reduced system containing 30 states was found. For
this case, all states associated with poles with real parts
less than —1.4 were eliminated because, compared to the
poles near the imaginary axis, these poles decay much
faster and are probably not important for the design of
the controller. Additionally, several double poles from
the Squire modes had to be handled manually. Single
zeros lie on top of these poles which caused the automatic
reduction scheme to eliminate both poles as unobservable
and uncontrollable. Consequently, one of the two poles
had to be added back in manually.

Although the reduced-order system was derived with
methods that were not entirely systematic, the frequency
response of the reduced system matches the full state (mi-
nus the resolution error) fairly well (see Figure 2). Thus,

¢
1 vt - - — - -~ veer

P A A
Figure 2: Maximum singular values for full (solid) and re-
duced (dotted) state systems.
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Figure 3: Reduced plant (diamond) & compensator (star).

the compensator was designed on this reduced-order sys-
tem.

Figure 3 is the pole structure of the closed loop, reduced-
order system, showing how the poles progress as the com-
pensator gain is increased from zero to 1. Figure 4 sim-
ilarly shows the pole structure of the full state system
with the compensator. These figures demonstrate very
clearly the effectiveness of the reduced-order controller.
The controller was designed using a reduced-order system
of only 30 states, which represents a dramatic decrease
from the full 500 states. Even so, the controller is ca-
pable of suppressing the least stable pole of the minimal
realization. Although these results are preliminary, they
are very encouraging.

6 Conclusions

This article presents the successful application of
reduced-order linear feedback control on a three-
dimensional flow. A controller based on a model reduced
from 500 to 30 states was designed using LQG synthe-
sis. Although the analysis is limited to a single wave
number pair decomposition of the flow, the controller
demonstrates that it can increase the decay rate of the
least stable mode (Figure 4).

These are preliminary but very encouraging results. Cur-
rently, we are investigating the possibility of further re-
ducing the state and developing controllers for several
wave number pairs. Since the system is decoupled for
wave number pairs, these controllers will be developed
and applied in parallel, making the control of multiple
wave number pairs relatively simple. Ultimately, multi-
wave pair controllers will be tested on fully non-linear
simulations.

v -05 04 -03 02 0.1 [}
%

Figure 4: Full plant (diamond) & compensator (star).
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Abstract

We investigate the application of linear-quadratic-Gaussian (LQG) feedback control,
or, in modern terms, Hy control, to the stabilization of the no-motion state against the
onset of Rayleigh-Bénard convection in an infinite layer of Boussinesq fluid. We use two
sensing and actuating methods: the planar sensor model (Tang and Bau 1993, 1994),
and the shadowgraph model (Howle, 1997a). By extending the planar sensor model to the
multi-sensor case, it is shown that a LQG controller is capable of stabilizing the no-motion
state up to 14.5 times the critical Rayleigh number. We characterize the robustness of the
controller with respect to parameter uncertainties, unmodelled dynamics. Results indicate
that the LQG controller provides robust performances even at high Rayleigh numbers.




1 Introduction

When a layer of fluid at rest is heated from below, fluid motions will develop into well organized
convection patterns if the temperature difference across the layer is sufficiently large (Cross
and Hohenberg, 1993). For certain industrial applications, developing a temperatixre gradient
across the fluid layer is unavoidable but at the same time preventing convective fluid motions is
Aeshable. Some examples involving undesi_rable effects of convection are material processing,
solidification, semiconductor melts, welding, evaporative coating and crystal growth. Our
aim is to use robust modern control methodologies to inhibit the onset of convection while
permitting a large thermal gradient across the layer of fluid.

The idea of stabilizing the fluid layer against the onset of cellular motions has been ad-
vanced by Tang and Bau. (1993,1994,1998a,b) and Howle (1997a,b,c,2000). Tang and Bau
assumed that the temperature field can be measured continuously on a horizontal plane in
z,y and t (see Fig. 1). The measurements are then used to control thé temperature at the
lower wall, in order to cancel the thermal disturbances in the fluid that drive the overturn-
ing motions. Howle (1997a) investigated a similar control problem, except in his case the
measurements consist of shadowgraph images of the fluid. The shadowgraph images cépt:ure
the horizontal distribution of the vertical-mean temperature. Moreover, in Howle’s model,
heat-flux rather than temperature is prescribed at the lower wall. Both types of sensor and
actuator models will be considered in this study using a more sophisticated form of control
synthesis.

‘Based .on proportional feedback control, the results of Tang and Bau and Howle show that
both sensor models exhibit a maximal achievable stable value of Rayleigh number Ra, beyond
which this simple controller is ineffective for stabilization. For the planar-sensor model Tang

and Bau (1993,1994) showed that the controller can inhibit convection up to a maximurm of




about 3.8 times Rac at Pr = 7, where Ray = 1707.76 is the uncontrolled critical value.
This value is Pr-dependent. Furthermore, the authors (Tang and Bau, 1994)
consideréd a velocity actuator which inhibits convection up to 10 times the critical
Rayleigh number. For the shadowgraph sensor model this maximum is about 3.13 times
Ra = 1295.78. In Section 4 the differences in performance between the two sensor models
using only the thermal actuators, and the limitations of the proportional feedback control will
be discussed.

The degree of stabilization can be improved significantly by using synthesis methods for
multiple-input/multiple-output systems which produce dynamic compensators. However, in
this study a distributed single-input /multiple-output strategy will be considered, since nor-
mal modes of different wavenumbers decouple and each normal mode can be controlled
individually.

One of such synthesis methods is known as the linear-quadratic-Gaussian (LQG) control
(Bryson and Ho, 19.69), or, in modern terms, s control. Other methods such as ‘Hoo synthesis
(Rhee and Speyer, 1991) could also be applied, but we suspect with similar results. The
LQG approach allows us to consider a nominal design Rayleigh number (Ra*) significantly
higher than that considered in the previous studies. For values of Ra sufficiently near Ra*,
stabilization with the LQG controller appears always to be achievable. Moreover, for Ra*
below a certaiﬁ threshold, the complete range of Ra up to a critical value can be stabilized. In
this study, we show that the system can be stabilized up to Ra = 14.8Ra,. In this
range the first even and odd modes of convection can become unstable. However,
these two modes are damped by the LQG controller. The higher modes are
naturally damped within this range of Ra. Our aim is to ensure stability over the entire

range of Ra up to a maximum critical Rayleigh number, without the formation of isolated




unstable regions within this range. This requires the determination of the value of Ra* to
producé this maximum critical Rayleigh number.

Unlike the propprtional control method, the LQG synthesis method requires some elabo-
ration. This synthesis method consists of two steps: (i) a reconstruction of the internal states
of the plant based on the measured information, and (ii) a regulation of the plant states in
order to dnv;e the estimated perturbatlons to a zero level To accomplish these two steps, the
LQG controller is formed by a Kalman filter and an optimal regulator in cascade.

The LQG synthesis method has recently been used in the study of drag reduction in channel
flow by Joshi et al. (1999) and by Cortelezzi and Speyer (1998) based on Joshi et al. (1997)
who first introduced the system theoretic approach. Cortelezzi and Speyer (1998) presented
a framework suited for practical implementations and demonstrated the performance of the
design in numerical simulations. Following this framework, our investigations focus on a
robust stability analysis of the closed-loop system as applied to Rayleigh-Bénard convection.
Design parameters of the filter and regulator are carefully chosen to enhance the robustness
of the stabilization. Several integrated design aspects are discussed.

This st1dy intends to provide a design of controllers for future experiments. The design
goal is {0 maximize the stabilitj} range of Rayleigh number. This implies designing controllers
at the highest possible design value Ra*, without causing an unstable, isolated region to
form below Ra*. Since the controllers are implemented at each wavenumbe;‘ and only Ra is
being varied, one form of robustness being demonstrated is the robustness of the system with
respect to variations in Ra away from Ra*. Another form of robustness is concerned with
ﬁncertainties in the system apart from the mismatch in Ra. For example, uncertainties due
to nonlinearities or unmodelled dynamics. The objective of this papef is to produce

a robust design based on classical relative stability measures of gain and phase




margins that accommodates to a degree unmodelled dynamics and nonlinearities.
Nonlinear simulation is required to validate the design. We will show that the gain and
phase margins depends crucially on the number of sensors used. More measurements implies
better knowledge about the internal states of the system. In this study we are interested in
determining the minimum number of sensor planes, as well as their locations, for achieving
a reasonable degree of robustness. From a theoretical point of view, the planar sensor model
appears to be more effective and accurate than the shadowgraph sensor model, mainly because
a multiple planar sensor configuration can be readily incorporated. As the results will show,
increasing the number of sensors, i.e., the measured information about the internal states, is
crucial for achieving the desirable robustness.

We now proceed to Section 2 to derive the standard state-space equations for both sensor
models. In Section 3, we review the theory of the LQG optimal control synthesis. In Section

4, the results are discussed and in Section 5, we conclude the paper.

2 State-Space Formulation

In +.is Section, we derive the state-space equations. Following the framework presented
by Cortelezzi and Speyer (1998), we start from the governing equations and subsequently
transform them into a set of ordina,ry differential equations expressed in state space form.
This procedure includes a transformation of variables, a spectral decomposition of the resulting

equations and expressing these equations in the standard state-space form.

2.1 Governing Equations

We consider an infinite layer of Boussinesq fluid heated from below, which is parallel to the

zy-plane and bounded by non-permeable walls at z = +d/2 (see Fig. 1). Our aim is to com-




pare the performance of the LQG controller with the performance of the proportional feedback
control method based on two known models. Therefore, in our formulation the boundary con-
ditions usea in these two models will be preserved. For both models, the upper wall is assumed
to be infinitely conductive at constant temperature Ty. For the planar sensor model (Tang
and Bau, 1993,1994,1998,1998b) temperature is measured on an interior plane (see Fig.1,
T*(z) denotes the basic state).. These measurements are used to modify the constant lower
wall temperature T5 with the actuator temperature 87 (z,y,t). For the shadowgraph sensor
model (Howle, 1997a, 1997b) measurements of the vertical-mean temperature distribution are
obtained in the form of a shadowgraph. These measurements are used to modify the constant
heat flux Q* at the lower wall with the actuator heat flux g} (z,¥,1)- Different actuators are
used to allow direct comparisons between the performances of the LQG controilers with the
proportional controllers used in the original models.

We scale length, time, velocity, pressure relative to the hydrostatic pressure, and tem-
perature, respectively, by d, &?/«, k/d, pvk/d* and (T3 — T}) or Q*d/K deﬁending on the
model chosen, where p, K, V apd K are, respectively, density, thermal diffusivity, kinematic
viscosity and thermal conductivity of the fluid. The linear stability equations for the vertical

perturbation velocity w(w, ¥, z,t) and perturbation temperature 6(z,y, 2,t) are
(Pr=18, — V?)V?w = RaV10, (1)

(6 - V)0 = w, | @)

where V2 = V2 — 9, (e.g. Chandrashekhar, 1961). The Prandt] number is Pr = v/k. The
Rayleigh number for the planar and shadowgraph cases are defined, respectively, as Ra =
ag(Ty — Tt)d*/vk and Ra = 0gQ*d*/Kvk, where o is the coefficient of volume expansion

and g is the gravitational acceleration.




The boundary conditions on velocity are
w(z,y, £1/2,t) = Sw(z,y,£1/2,t) = 0. (3)

As for the thermal boundary conditions, the upper wall is considered isothermal so that the

perturbation temperature must satisfy
0(z,y,1/2,1) = 0. (4)

Based on the planar and shadowgraph sensor models (Tang and Bau, 1993,1994, Howle,

1997a), we apply a continuous time-dependent control temperature along the lower wall for

the planar sensor case,

9(1’, Y, _1/2)t) = 95(5!2, Y, t)a (5)
while for the shadowgraph model we apply a continuous time-dependent heat flux g. instead,
BZO(IE, Y, _1/27t) _= QC(:E?:% t)' (6)

The planar sensor model measures the temperature distribution at a number I of zy-planes

located at z = 289 € [-1/2,1/2), where i = 1,2,...,I. The measurement equations are
00 (z,y,1) = 0(z,y,2,4), i =1,2,..., I, (7)

where zgi) is the z-coordinate of the i sensor plane. The shadowgraph model measures the

average density over the whole layer, ps, which is expressed in terms of temperature by

1/2
ps(@, ) = / | VA0 w0, (®8)

where p; is the measurement function in density. We refer readers to Howle (1997a) for the

derivations of this integral expression.




2.9 Transformation of Dependent Variables and Cost Criterion

We transform the perturbation temperature so that equations (1 ) (8) have homogeneous ther-
mal boundary conditions. The perturbation velocity remains unchanged With the perturba-

tion temperature as 8 = ¢ +§, we obtain for both sensor models
(Pr—18; — V?)V?w — RaVi¢ = RaV 3 (9)
(6 - §2)¢ ~w=—(8 -V, (10)
subject to the boundary conditions
w(z,y,£1/2,t) = dw(z, Yy, :i:1/2,t)' = ¢(z,y,1/2,t) =0. (11)
Furthermore, for the planefr sensor model ¢ must satisfy the boundary condition
¢(z,y,—1/2,8) =0, - (12
while for the shadowgraph sensor model ¢ must satisfy the boundary condition
8.p(z,y,—1/2,t) =0. (13)

The forcing function ¢ satisfies a non-homogeneous boundary condition at the lower wall
and a homogeneous boundary condition at the upper wall. For the planar case these conditions

are
£(z,y,~1/2,1) = 0c(,9,1),  &(z:9:1/2,8) =0, (14)
and for the shadowgraph case we have instead

azg(xayv—l/z’t) = gc(, ¥, t) ’ (=, y, 1/2,t) =0. (15)
The two set of measurement equations in terms of the new variables for the planar and
shadowgraph cases become
09 (z,5,1) = $(z,9, 20, 1) + £z, y, 20, 8),  i=1201 (16)
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1/2
ps(xz y7t) = /_1/2 Vﬁ_(qﬁ(x,y, z, t) +£(a=,y, 2, t))dz . (17)

Note tha‘t the sensors could be located at discrete points in the z —y plane, but
to be consistent with Tang and Bau (1993,1994) we have considered continuously
distributed sensors. Furthermore, Tang and Bau’s experiment (1998a) using dis-
crete sensors and actuators show consistency with their theoretical work using
continuously distributed sensors and actuators. Finally, we introduce the cost crite-
rion. Our goal is to design a controller able to drive the measured perturbation temperature
to zero, without using unnecessarily large control action hopefully resulting in
little saturation of the actuators. Thus, the performance index includes weighting on the
control. We consider a layer of fluid with large aspect ratios L; and L, with peri-
odic boundary conditions (see Fig. 1), assuming that the influence of the lateral
boundary conditions in a finite layer of fluid is negligible. The LQG controller is
determined by finding the control action which minimize the cost criterion. For the planar

sensor model we define the cost criterion as

T L pLy L. .
J= /t { /0 fo [Z(eg'))2+702]dwdy}d7, (18)

=1

and for the shadowgraph sensor model it is

J = /tT {/OL foLy /tT(p§+7q3)dxdy} dr . ' (19)

2.3 Modal Decomposition

A periodic boundary condition permits us to perform a Fourier decomposition in the horizontal
coordinates. The vertical dependence of the flow field and thermal field is constrained by

the upper and lower wall boundary conditions. The vertical dependence will be decomposed




separately in Section 2.4. We describe an infinitesimal three-dimensional disturbance

to the no-motion state. Consequently, we have a double sum of the Fourier normal modes

for the disturbances:

M N
w(x, Y, 2, t) = Z Z{';‘[Wr,mn(za t) + Z VVi,mn(z; t)]ei(mkzx+nkyy) + C.C.},
m=1n=1
M N 1 . .
é(z,y,2,t) = Z Z{-i[@,.,mn(z,t) + i @i mnlz, t)]e’(mk’z+"kvy) +c.c.}, (20)
m=1n=1
M N
¢y, OEDY Z{ [Ermn(2,1) +i Eimn(z,1)]e™e=t 08 L cc}

m=1n=1

where c.c. denotes the complex conjugate. The measurement and control functions are repre-

sented by
M N 4 ' _
69 @,y 1) = 3 D {5108 ma(®) +i 00 g (™) tec},  j=1,.1,
m=1n=1

M N
Ps (:L'a Y t) Z Z{ [Rsr,mn (t) +1 Rai,mn(t)]ei(mkzz+nkyy) + C.C.},
m=1n= (21)

M N
6@, 1t) = 3 S {2 Oerymn(t) + i Ocimn (D)X= +1H8) 4 ),

m=1n=1

N =

N =

qc(m y,t) = % i{ [Qermn(t) +1i Qa-,mn(t)]e"(mk’”"k”y) +c.c.},

m=1n=1 ,
where the subscripts » and ; indicate real and imaginary parts, respectively. The two fun-
damental wavenumbers are k; = 2r/L; and ky = 2r/Ly. From the classical theory with-
oug control, a normal mode disturbance is unstable in the region above a neutral curve
Rag(k) (Chéndrashekha,r, 1961), where Rayp is the Rayleigh number at neutral stability in
the open-loop system and k = \/k%Tkg is the magnitude of the wavevector. We truncate
the infinite series above to M x N horizontal modes, which span the unstable range. Since
the basic equations depend only on the horizontal Laplacian Vﬁ_, the wavenumbers appear
only in even powers and can be described in terms of an internal parameter k(m,n), where
k(m,n) = \/m We further substitute (20) and (21) into equations (9)-(17) and

separate the real and imaginary parts. It should be remarked that the linear structure
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includes all patterns at the onset. Certain realizable patterns, such as rolls and
hexagons, will be selected when the nonlinear and symmetry-breaking effects are
included in the model. The paper is focused on the stabilization of the no-motion
state. Suppression of selected convection patterns and return to the no-motion
state will be addressed by applying our LQG controller to a direct numerical
simulation of convection.

Since the governing equations contain only even derivatives with respect to z or y, the
real and imaginary parts of the dependent variables decouple and satisfy to the same set
of equations. Furthermore, since the problem is linear, we can consider each normal mode
separately. For simplicity of notation, we drop the indices of the Fourier coefficients, and
define W = Wrmn = i,mna =@ mn= ®; mn, E=Ermn = SR ©¢ = Ocrymn = Oci,mn;
QC = ch,mn = Qci,mna @-(91‘) = eg’;‘),mn = @S:.),m'n. a-nd .R_g = Rsr’mn = Rsi,mn- The governing
equations are reduced as followed:

[Pr—(82 — k)3, — (82 — K*)!|W + Rak®® = —Rak’E, (22)
(6 — (82 — KR))@ — W = —[3, — (82 — K*)JE- (23)
The boundary conditions 2re homogeneous. For the planar case we have
W(£1/2,t) = 8,W(£1/2,t) = o(£1/2,t) =0, (24)
and for the shadowgraph sensor model we have instead
W(£1/2,t) = 9, W (£1/2,t) = ®(1/2,t) =0, 0,9(-1/2,t) =0. (25)
The forcing function E satisfies non-homogéneous boundary condition at the lower wall and
homogeneous boundary condition at the upper wall. For the planar case the forcing function
is given by
E(—1/29t) = @c(t) ’ E(l/z’t) =0, (26)
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and the corresponding measurement functions are
ed(t) = a(z¥,t) +E(z,1),  i=12.1 (27)
For the shadowgraph sensor model, the forcing function E is
8,2(—1/2,t) = Qc(t) 2(1/2,t) =0, (28)

and the corresponding measurement function is
1/2

mm=-ﬁﬁw@@@+a%ma. (29)
In our approach, each distinct horizontal normal mode is éontrolled by a separate controller.
Therefore, for the implementation M X N controllers are required. As a simple illustration
for the analysis, consider an aspect ratio L;/d and Ly/d equal to 207. In this case, the oniy
wavenumbers present are the fundamental wavenumber k = 2r/L = 0.05, and its harmonics.
For Ra up to 15Rac, the wavenumbers from k = ks to k = 12 (equal to 240kys). These
wavenumbers represent the ensemble of normal modes used to represent the convection field.
In a physical implementation of the planar sensor model, both the measurements and
control action occur in physical space but the controllers (;perate in the Fourier space. Sensors
and actuators are interfaced to the controllers by fasé Fourier transforms (FFT). Figure 2(a)
links with simplicity the mathematical formulation to its computational implementation by
summarizing in a block diagram the control strategy described above. The controllers can be
programmed in a computer routine whose inputs are the arrays containing the temperatures
measured by the planar sensors and whose output is an array containing the temperatures to
be applied at the bottom the wall. The temperature measurements obtained by the planar
sensors are converted by a fast Fourier transform into a set of modal sensor variables. Each

pair of estimator and control blocks is integrated in time. Parallel computation produces
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the modal control variables. An inverse FFT converts the modal control variables into the
actuating temperature at the bottom wall. This routine can be embedded in any Navier-
Stokes sol-;rer able to handle time-dependent boundary conditions for the control of more
realistic simulations of Rayleigh-Bénard convection.

Figure 2(a) also provides the basic architecture for the potential implementation of the
present controller in an experiment and, eventually, in practical engineering applications.
The temperature distribution at a given plane (zgi)) (¢ = 1,2,...,I) could be measured by a
planar sensor constructed with an array of micro-electro-mechanical-systems (MEMS) diode
sensors (see Tang and Bau, 1998a and 1998b). Analog to digital converters (A/D)
and digital signal processors (DSP) would convert the measured temperatures z$) into the
modal sensor variables. Each pair of estimator and control blocks would be replaced by .a
microprocessor, and a parallel computation produces the modal control variables. A DSP and
a digital to analog converter (D/A) would produce the actuating signal. Finally, an array
of MEMS heaters would provide the tempera,tufe distribution at the bottom wall (Tang and

Bau, 1998a,b).

2.4 State Space Representation of Temporal Dynamics

In this subsection, we consider a numerical procedure to represent the vertical dependence of
the velocity and thermal field. We consider the Galerkin approach (Gottlieb and Orszag, 1981)
for the representation of the vertical dependence of the normal modes. Tﬁe beam functions
{pm} are used as the basis functions for W which has to satisfy four boundary conditions. On
the other hand the sinusoidal functions {m} are used as basis functions for & which only has
to satisfy two boundary conditions. In our numerical computations, we truncate the infinite

set to the first N, terms for both W and ©. We use the same truncation number for both
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fields mainly for numerical convenience.

In general the Chebyshev polynomials have good convergence properties. How-
ever, in our application individual polynomial does not?satisfy the homogeneous
boundary conditions. In contrast, individual beam functions do satisfy the ho-
mogeneous boundary conditions naturally and they converge reasonably fast for
our stability analysis. Also, sipce we have transformed the thermal boundary
condition at the lower wall to a homdgeneous form, our results are not affected
by Gibb’s phenomenon.

The Fourier coefficients for the vertical velocity W (z,t) is expanded as follows:

sinh(amz + imm/2) _ sin(amz + mn /2)
W(z1) 2 Am (&) z) Z An(?) [ sinh(am, +imn/2)  sin(am +mn/2) ] - (30)

Since the thermal boundary conditions for the planar sensor model and shadowgraph sensor
model are different, the sinusoidal basis functions {8} are different for the two cases. For

the planar sensor model we let

N, N,
2t) = Y. Bu(t)Bm(2) = Y Bm(t)V2sin[mn(z+1/2)] (31)
m=1 m=1

and for the shadowgraph sensor model we have instead
N, ‘
®(z,t) = Y Bm(t)Bm(2) = Z B (t)V2sin[(m — 1/2)7(z — 1/2)] . (32)
m=1

A convenient choice for £ which satisfies the appropriate boundary conditions of the planar

sensor case is

Z(z,t) = (1/2 — 2)O(t), (33)

and which satisfies the boundary conditions of the shadowgraph sensor case is
E(z,8) = (2 — 1/2)Qc(t) - (34)
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For the planar case, we now substitute (30), (31) and (33) into Egs. (22) and (23), and

perform the Galerkin projection. The following equations are obtained:

N, . N,
prl Z < ¥y (82 — K*)pom > Am = Z < @i, (82 — k220m > Am

m=1 m=1
N: (35)
—k?Ra Z < @j,Pm > Bm — k?Ra < @j,(1/2 —2) > Oc,
m=1
) N N
Bm=Y. <0 (8} —F)Bm > Bn + Y. < Bjrom > Am
m=1 m=1 (36)

— < B;,(1/2 - 2) > Oc+ < B, (83 —K)(1/2=2) > Oc,,

where the index j runs from 1 to N, and the inner product < , > denotes integration over
z € [-1/2,1/2]. The corresponding equations for the shadowgraph model can be obtained
from Eqs.(35,36) by replacing © by Q. and (1/2—2z) by (z—1/2). Therefore the shadowgraph
model equations will not be presented explicitly.

After substituting (31) and (33) into Eq. (27), we obtain I measurement equations for the

planar case,

N, '
09(0) = 3 Bn®Bn(e?) + (1/2- 0 i=121 (37

m=1

For the shadowgraph case, upon substitution of Eqs. (32) and (34) into Eq. (29), we have a

cingle measurement equation
N, 1/2 1/2
R,(t) =Y Bn(t) / (—k%)Bm(2)dz + Q¢ / (-k%)(z — 1/2)dz . (38)
. mel -1/2 -1/2

As a final step, we construct a state vector X by arranging the coefficients A, and By, as
follows

X = [A1, 4o, ..;AN,,Bl, Ba, ..., Bn,), (39)

where superscript ’ denotes transpose. Equations (35) and (36) can be rewritten in state space
férm as

X = AX + B1©, + B2O , (40)
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while the measurement equation (37) can be re-written as
®; =CX + D30, . (41)

In order to cast the matrix equation in a standard state-space form we can either choose ©, or
its time derivative as the control action variable. Here we define u = ©.. The term ©. can be
eliminated from Eq.(40) by defining a new state vector x = X —B,®.. Upon transformation,

the state-space equations can be written as
x = Ax+Bu, (42)

z =Cx+Du, (43)

where B =By + ABy, D=D3+CBy,u= ©. and z = ©,. Matrices A, B, and C contain
the dynamics of the plant, actuators, and sensors, respectively. Matrix D contains the direct
coupling between sensors and actuators.

The cost function of each wavenumber can be minimized individually, because
of the orthogonality between pairs of Fourier modes. From Eqgs.(18,19), following
the normal decomposition, the cost function in state-space form for wavenumber
k is

J(k) = /tT(z'z + yu'u)dr . (44)

In Section 4, we allow z to be a vector but restrict u to a scalar quantity u.

3 Optimal Control Theory

In this section we describe the basic theory of the LQG control (Bryson and Ho, 1969), or, in
modern terms, Ha control. A brief review will be given in a self-contained manner to provide

the necessary governing equations for the closed-loop stability analysis.
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The LQG problem is formulated as a stochastic optimal control problem described by
equations

x=Ax+Bu+Tw, (45)
z=Cx+Du+v, (46)

where T is an input matrix, w and v are both white noise processes with zero means and

auto-correlation functions
Elw(t)w'(1)] = Wé(t — ), E[v(t)V ()] = Vé(t - ), (47)

where E[] is the expectation operator averaging over all underlying random variables and
6(t — 7) is the delta function. Note that W and V, the power spectral densities, will be
chosen here as design parémeters to enhance system performance. In our case I' will be
taken as B, implying that the disturbances, in a manner similar to the control,
enter the system dynamics at the wall.

The LQG controller is determined by finding the control action u(Z;), where Z; = {z(';-); 0<

T < t} is the measurement history, which minimizes the cost criterion

. 1 T ! / !
J_Th_{%oT_tE[/t (x'Qx + 2x'Nu + w'Ru)dr (48)
subject to the stochastic dynamic system model equations (45) and (46). The division by

(T — t) ensures that the cost criterion remains finite in the presence of uncertainties in the

infinite-time problem (T — 00). Note Eq.(48) can include Eq.(44) where

= lim ——E[J ()] (49)

ToocT —1
Note that even though the time interval is infinite, time response is still measured by the
eigenvalues of the closed-loop system. We consider the infinite-time problem with a time-

invariant dynamics system because the controller gains become constants. For Q and N
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chosen to be consistent with the cost criterion Eq.(44) (see Eq.(62)), the cost
criterion will remain positive definite (see Bryson and Ho (1969) for necessary
and sufficient conditions for optimality with general Q and N).

By nesting the conditional expectation with respect to Z; within the unconditional expec-
tation of Eq.(48), ie., E[J (k)] = E[E[J(k)/Z]} where E[-/Z;) denotes the expectation (-)

conditioned on Z;, the cost criterion can be written as

s ot !
J_Tliméo——T— E[/[ %' Q% + 2%'Nu + u'Ru + tr(P)ldr| . (50)

where % = E[x/Z;] is the conditional mean estimate of the state x. The term ir(P) is the
trace of the error variance matrix which naturally occurs as a result of taking the
conditional expectation into the integrand of the cost criterion. This cost criterign
is now minimized subject to the estimation equations discussed below. Note that P does not
depend on the control (see Eq.(53) below) and therefore, does not enter into the optimization
process.

The solution to the regulator problem (Bryson and Ho, 1969) is a compensator composed
of a state reconstruction process, known here as a filter (in the no noise case it is known as an
observer) in cascade with a controller (see Fig. 2(b)). The state estimate ( coﬁditional mean)

is called the Kalman filter, and is governed by
i=A'%*+Bu+Kp, v=z-3=C(x-3%)+v, (51)

where the matrices with asterisk superscripts correspond to the nominal point (k*, Ra*). The
Kalman gain matrix Ky, constructed to trade the accuracy of the new measurements against

the accuracy of the state propagated from the system dynamics, is given by

K;=PC'V!, (52)
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where P is the error variance in the statistical problem. In the infinite-time stationary for-

mulation, the error variance P is the solution to the algebraic Riccati equation (ARE),
A*P + PAY + TWI' - PC*V~!C*'P =0. (53)

If the system is (A* C*) observable and (A*,T) controllable, then P is positive
definite. Under these assumptions, it can be shown that the difference between the internal

state x and the estimated state X, i.e., the error
e=x-X, (54)
goes to zero as time goes to infinity. In other words, the evolution equation
é=Are+Ksv+Tw, (55)
is stable, i.e., all the eigenvalues of the matrix
Ap=AT-K/C’ - (56)

have negative real part.

Minimizing the infinite-time cost function J, Eq.(50) subject to Eq.(51) yields the following

control law,

u=-Kgx*, (57)

where

K.=R(B'S+N), (58)
and S is the solution of the algebraic Riccati equation (ARE)
A*S+SA*+Q- (SB*+N)R™!(B*S+N')=0. (59)

It should be remarked that the control gain matrix K. is determined from functions only

of the known dynamic coefficients (A*,B*) and weightings in the cost criterion (Q,R), and
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not the statistics of the input (V, W). Consequently, K. is determined from a performance
index as (48), independent of the stochastic inputs. If (A%, B*) is controllable and (A*, Ql/?)

observable,‘ then the loop coefficient matrix
AC = A* - KcB* . (60)

is stable. The controllable and observable conditions can be weakened to stabilizable and

detectable (Kwakernaak and Sivan, 1972).
When we combine the estimator and the regulator together, the dynamic system composed

. of the controlled process and filter becomes

e Ay 0 e Kfv +TI'w
’ + . (61)

%) .| K0 Ac |\ % Ksv

Note that any choice of two between e, X and x produce the same dynamics because they are
algebraically related by Eq.(54). Under the above controllability and observability assump-
tions, Ay and A, have only stable eigenvqlues if optimal gains Ky and K, of Egs. (56,60) are
used. Other schemes such as Hoo could be proposed (Rhee and Speyer, 1991), but from expe-
rience these schemes seem to produce only secondary modifications in the system performance
~ser our LQG controller.

The infinite-time stationary formulation will be used in our study. The LQG control loop

is shown in the block diagram of Fig. 2(b). Note that the cost function (44) can be expressed

in the standard form (48), if we let
Q — C*Ict , N = C*’D* , R —_ (’Y + D*/D*) . (62)

Since the power spectral density is not known, for simplicity of the design we consider V and
W to be of the form V = oI and W = SI where o and f are scalar and I is a unity matrix.

Only the ratio of o with § is important.
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The process noise spectral density 8 and the weighting v in the cost function are considered
design parameters. The case where v — 0 corresponds to unlimited control authority of the
full-state feedback controller. The choice T' = B* allows for loop-transfer recovery (Doyle and
Stein, 1979). Loop-transfer recovery of the LQG controller to full-state feedback guarantees
that robust performance occurs when the process noise goes to infinity, i.e., 8 — oo, provided
there exists no nonminimal-phase zero in the plant. In our case, there are nonminimal-phase
zeros, but a partial recovery is still shown to be possible (Turan et al. 1994).

As we have noted in Section 2, the analysis will bé based on a single normal-mode model
because the normal modes decouple. Although only one controller is needed at (Ra*,k*),
it is implemented for different k* over a range of wavenumbers. The design point is
determined so that when the controller is implemented, no unstable region appears below the
neutral curve. Although the plant has multiple outputs, the system can be analyzed in terms
of robustness as a single-input/single-output (SIS0) system by breaking the loop at the plant
input (see Fig. 2(b)). We denote the output u of the controller with u, and the input u to the
plant with u;. The open-loop system of equations formed by breaking the loop at the input
to the plant is

o = AgXe + Bou; ug = CoXg + Daui (63)

where the augmented state composed of the plant and compensator in cascade is x, = [x/,%']'.

The coefficient matrices are given by

A 0 B
Aa = ’ Ba ’ (64)

K;C (A*-B*K.-K;C*+K;D'K,) K;D

Ca=[0, _Kc], Da—_-o.
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The evolution equation for the closed-loop feedback system is
x A —-KBK, x
- (63)
% K;C (A*-K;C'-BK.+K;(D" - KD)K,) %
where u; = Kup. In the above equation, matrices with an asterisk superscript correspond to
the design parameters k* and Ra*. Note that in the particular case when the plant operates
at nominal design condition, ie, k = k*, Ra = Ra* and K = 1, the closed-loop poles will
correspond to the ensemble of eigenvalues of Ay and of Ae. In other words, Eq. (65) reduces

to Eq.(61) and the filter poles and regulator poles decouple. One can show this from the

following transformation,

= ‘ | (66)

where I is an identity matrix.

In general, the plant does not operate at the nominal design condition. Consequently,
there is a mismatch between the parameters (k*, Ra*) used to design the controller and the
operating parameters (k, Ra). Our analysis uses two methods to characterize the robustness
of the stabilized system: neutral curves and gain and phase margins. In the first method,
we select the nominal points (k*, Ra*) and construct the region of stability of the dynamics
system (65) as Ra and k vary with K = 1. The boundary of this region is where the real
part of the ieast stable closed-loop pole of Eq.(65) becomes zero. This boundary curve in
the k — Ra plane is called the neutral curve. We identify the minimum of Ra with respect
to wavenumber on the neutral curve, so that the range of Ra from zero to this minimum,
along with the whole range of wavenumber is stable. By robustness we mean constructing the
largest range of Ra from zero up to this minimum.

| The second method used to estimate robustness is the classical gain and phase margins

approach. This approach allows us to characterize robustness with respect to more general
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uncertainties, such as unmodelled dynamics. To obtain the gain and phase margins, we
consider an error model K = |K le*® (see Fig. 2(b)), with the plant operating at the nominal
pa.rameters. k = k* and Ra = Ra*. The shift of |K| and ¢ from these nominal values (K| =1,
¢ = 0) to where the system becomes unstable are essentially the gain and phase margins,
respectively. Their values can be determined from accompanying Nyquist plots. The gain and
phase margins are defined explicitly in Section 4.2.1 where these values indicate the amount

of gain and phase change that the system can tolerate due to uncertainties in the system

dynamics.

4 Results

In this paper, we consider ’;he condition of Pr = 7 which enables us to compare our numerical
results with those of Tang and Bau (1994, 1998b) and Howle (1997a). In their experiments,
however, Howle (1997b, 1997¢) used a high-Pr fluid (Pr = 200) whereas »in Tang and Bau
(1998a) the Pr value of their testing fluid was not given. It should be noted that while the
stability properties in the uncontrolled case is independent of Pr, they are Pr dependent in
the controlled case.

Our numerical results have been obtained using N, = 26 (see Section 2.4)
which appears to be adequate for our stability analysis. For example, consider
the closed-loop eigenvalue prbblem of Eq. (65) with controller design values
Ra* = 14.8Ray and k* = 3.15 and the system evaluated at k = 5.5 and Ra = 14.52
which lies on the neutral curve (see Fig. 8(d)), the norm of eigenvector (square
root of the mean-square sum of entries) of the neutral eigenvalue Qf the coefficient
fnatrix of Eq.(65) appears well converged. When N, = 26 is increased to 52, this

norm changes only by less than 0.7%.
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4.1 Proportional Feedback Control

For convection in a layer of fluid bounded by rigid walls with prescribed temperatures, it is well
known thaLt the critical Rayleigh number Rac = 1707.76 occurs at wavenumber ko = 3.117
(Chandrasekhar, 1961). Instead, when heat flux is prescribed at the lower wall, the critical
value Raqp =~ 1295.78 occurs at k. = 2.552.

In the case of proportional feedback control, the control law is u = —Kpz, where K is a
constant proportional gain. We consider the planar sensor model to illustrate the effects of
feedback control upon stability, and the results are shown in Fig. 3(a). In this figure three
neutral curves are shown, each curve consists of a heavy and a thin solid line, representiné
a monotonic mode and an oscillatory mode of convection, respectively. The oscillatory mode
corresponds to a complex f:onjugate pair of eigenvalues. The three curves correspond to three
sensor locations: zs = 0 at the mid-plane and z; = +0.1. The offset with respect to the
mid-plane is 10% of the thickness of the fluid layer and gives a substantial shift in stability
properties. The unstable and stable regions are separated by a neutral curve and are identified
by the letters “U-” and “S”, respectively. In each case the maximum Ra achievable corresponds
to the crossing point, between the heavy and thin line.

For z, = 0.0, the monotonic mode is the lowest even mode of convection since the first
odd mode is unobservable. In fact, in this case the sensor plane coincides with the node of
fhe first odd mode. As K, increases beyond the crossing point the critical Ra decreases.
With this in mind, a pole-zero map and a root locus diagram are helpful to understand the
stability behavior. Figure 3(b) shows the open loop poles (x) and zeros (o) and Fig. 3(c) the
corresponding root locus diagram. For a given Ra, as Kp increases from zero the unstable
pole moves to the left while a stable pole moves to the right. Subsequently, the two poles

coalesce. After coalescence a pair of complex conjugate poles (correspondirig to the oscillatory
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mode) break off the real axis. The break-away point (where the coalescence occurs) moves to
the right as Ra increases. The crossing point in Fig. 3(a) corresponds to the coalescence at
the origin in Fig. 3(c). As Ra increases and keeping K, constant, the closed loop poles move
to the right.

From the root locus of Fig. 3(c), the results of Fig. 3(a) can be interpreted as follows.
For Ra above the crossing point, the system is unstable for any gain Kp. For Ra below the
crossing point, there exists a finite range of gain K, in which the system is stable. The lower
end point of the range corresponds to the minimal value of K, required in order to move
the monotonic pole to left-half s-plane. The upper end point of the range corresponds to the
maximal value of K, that can be used before the pair of complex conjugate modes become
unstable.

The stability diagram for the shadowgraph sensor model can be found in Howle’s paper
(19972). In this case there are no unstable complex conjugate modes. As Kp increases to oo,

the critical Ra increases monotonically to a.bou’é 3.13 times Raco.

4.2 LQG (H;) Control

Tle limitation in the performance of proportional feedback control provides the motivation for
de:veloping LQG controliers. We will apply the LQG synthesis method to both planar sensor
dnd shadowgraph sensor models. We first seek to reduce the number of design parameters in
our analysis. For a given set of physical parameters we examine the closed-loop eigenvalues
and observe that for a stable system the real part of the least stable eigenvalue has its largest
magnitude when y — 0 and 8 — oo. Since the observed improvements become less significant

for v < 0.1 and 8 > 100, we let y =0.1 and 8 = 100.
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4.2.1 Planar Sensor Model

(i) One-Sensor Control

The one-sensor model is especially convenient for understa.n(‘img the closed-loop stability
properties of the system. Once the qualitative properties of this case are understood, the
performance of the controller will be improved by adding additional sensors.

Figures 4(a)-4(f) show- the: neutral stability diagram in the (E, Ra) plane for a controller
(iesigned at the nominal values k* and Ra";. | The nominal point (k*, Ra*) is indicated by a
solid circle in the figures. The thin line and heavy line curves correspond to the neutrally
stable oscillatory and monotonic modes, reSpectively: In Figs. 4(a)-4(b) the sensor plane is
located at zs = 0.15. We use a larger sensor displacement with respect to the mid-plane than
the one used for the proportional feedback control to dramatize the effect on the neutral curve.
Figure 4(a) shows the neutral curves’ for a controller designed at nominal point Ra* = 5Raco
and k* = 5.3. The neutral curves have two minima, and the value k* = 5.3 has been chosen
to make the minima nearly the same. The controller stabilizes the system for ény Ra < Ra”.
To characterize the stability of the controlled system with respect to Ra*, we re-design the
controller for Ra* = 6Racs while maintaining k* fixed. Figure 4(b) shows a dramatic change
in the neutral curve, the banana-shaped branch moves downward giving rise to an unstable
region below Ra*.

To further characterize the stability of the controlled system with respect to the location
of the sensor, we move the sensor plane at z; = —0.15. We design a controller for k* = 5.3,
as before, and Ra* = 5Raco (Fig. 4(c)) and Ra™ = TRaco (Fig. 4(d)). Figures 4(c)-4(d) show
similar stability characteristics as those in Figs. 4(a)-4(b). However, the two branches of the

neutral stability curves switch role. The left branch now represents the monotonic onset while

the right branch represents the oscillatory onset.
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The role switch in relation to the location of the sensor plane deserves a closer examination.
We consider a smaller perturbation of the sensor location with respect to the mid-plane. Figure
4(e) shows the stability limits for three very close sensor locations. At z; = 0.000 (solid lines),
the neutral curve is composed of an oscillatory segment on thé left and a monotonic segment
on the right. At z; = 0.005 (dashed-dotted lines), the monotonic segment of the neutral curve
retreats rightward while the oscillatory segment predominates the range. At z; = —0.005
(dashed lines), the opposite effect occurs, the oscillatory segment of the neutral curve retreats
to the left. These results are consistent with the results presented in Figs. 4(a)-4(d). Since
significant distortions and shifts of the stability limits have occurred within a very small
perturbation of z;, sensitivity to sensor location becomes an important factor for the practical
implementation of the sensors. As subsequent results will show, this type of sensitivity is no
longer present if three sensors are incorporated.

In order to show that the lower unstable region will become much larger with further
increase of Ra*, w;a design a controller at the nominal values Ra* = 10Ra and k* = 5.3
and place the sensor plane at z; = 0.15 for an illustration. Fig. 4(f) shows a thin island of
stability in the unstable region. This stable region is bounded by two neutral curves which
coalesce on the right and intersect on the left. Figures 4(a)-4(f) reveal the occurrence of an
unstable region at Ra < Ra* which severely restricts the achievable degree of stabilization.

The results of proportional feedback control has demonstrated the significance of the sensor
location at z; = 0. This location gives the maximum range of stabilization even for the LQG
controller. We observe that Ra* can be raised to 10Raco at properly chosen values of k*
(see Figs. 5(a)-5(c)) without inducing a large lower unstable region, if the sensor is placed
at the mid-plane. At this Ra*, the system is stable up to the critical Ra of the first odd

mode (Ra. =~ 10.31Rap and k¢ = 5.36, see Chandrasekhar, 1961), since the first odd mode
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is not stabilizable because it is unobservable. Hence, there is no reason to place Ra* above
10.31Ragp. Below this value, however, the critical point of the neutral curve lies to the right
of the nominal point if k* is sufficiently small, or to the left of the nominal point if k* is
sufﬁcienﬂy large. For this case, we can use two nominal points to lift the overall neutral curve
to coincide with the neutral curve of the first odd mode.

Consider Ra* = 10Rac, just below the Rac of the first odd mode. We choose the two
nominal k* on both sides of k. = 5.36. The values at k* = 4 and 6 (marked by solid
circles) produce small dips in the unstable region and are reasonable to be used as nominal
points. Figures 5(a)-5(c) illustrate how the stability limit is determined by the principle of
superposition. The nominal point at k* = 4 in Fig. 5(a) corresponds to unstable region
delimited by the heavy solid lines which has a minimum Ra = 8.4Rax. For k < 5.9, the
stability limit corresponds to the neutral curve of the first odd mode. Similarly, in Fig. 5(b)
the second nominal point at k* = 6 corresponds to the an unstable region delimited by the thin
and heavy solid lines which has a minimum at about 9.5Raco. The thin line curve corresponds
to an oscillatory onset. The solid line curve coincides with a segment of the neutral curve of
the odd mode. If both nominal points are used for the controllers, then theb overall stability
limit coincide with the neutral curve 6f the first odd mode upon superposition. The controllers
designed at the first nominal point k* = 4 operate over the band 0 < k < k¢ = 5.36, while the
controller designed at k* = 6 operates over the wavenumbers greater than k.

The result shows that the degree of stabilization is significantly higher than that achievable
with the proportional control. Unfortunately, the one-sensor design is not sufficiently robust
With respect to the location of the sensor plane. This problem is significant because a perfect
sensor placement is not achievable in practice. To demonstrate the sensitivity, in Fig. 6(a)

we consider a planar sensor at z; = 0.0, ie., slightly off with respect to the mid-plane, and
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re-design the controller for Ra* = 10Ra and k* = 4. Fig. 6(a) shows the presence of a thin
stable region in the middle of the unstable region. This stable region is bounded from above by
a neutral ciirve of an oscillatory mode (thin line) and below by a neutral curve of a monotonic
mode (heavy solid line). The stable region exists for k < 3. As k increases it becomes a very
narrow strip §vhich eveptually terminates at k ~ 7.1, similar to the behavior in Fig. 4(f). For
comparison the neutral curve for the z; = 0 case (thin dashed line) is also included in Fig.
6(a). Comparing Fig 6(a) to Fig. 5(c), we see a dramatic difference in stability properties
due to a small shift of sensor location of 0.01. Fortunately, this sensitivity can be significantly
reduced by introducing a second sensor located close to the mid-plane. Figure 6(b) shows
the stability diagram when a second sensor included. This case will be discussed in the next
subsection.

To characterize the robustness of the controlled system with respect to plant uncertainties
we compute gain and phase margins at Ra = Ra* and k = k*. In all the cases ‘considered,
the open-loop system has one unstable pole so that for closed-loop stability the Nyquist locus
encircles (counter-clockwise) the point (—1,0) once. Because of this property, in general
there exists an upper and lower value to each gain and phase margin. The upper and lower
gain margins are designed to measure how much the gain K can be aecreased, or increased,
before the system becomes unstable (Fig 2(b)). Likewise, the upper and lower phase margins
are designed to measure how much the phase can be decreased, or increased, before the
system becomes unstable. Accordingly, the lower and upper gain margiﬂs are defined as
20log,o(1/X1) (dB) and 20log,o(X2) (dB), respectively, where X1 (|X1] < 1) and X3 (| X2| >
1) are the smaller and larger z-distances of the two crossing points of the Nyquist locus
with the z-axis. Since the angle is measured positive in counterclockwise direction, the lower

phase margin is defined as 180 — sin~1(Y;) degrees and the upper phase margin is defined
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as sin~1(Y3) — 180 degrees, where Y7 (positive) and Y> (negative) are, respectively, the y-
coordinates of the intersecting points between the Nyquist locus and the unit circle centered
at origin.

For the one-sensor model, the gain and phase margins are too small. At Ra = Ra* =
10Ra.g, for example, the margins are typically about 0.5 dB and 4°, In engineering applica-
tions, margins below 3 dB and 10° are often considered marginal. Therefore, we conclude
that as the system is stabilized for higher values of Ra, the magnitude of the
gain increases, increasing the sensitivity, as indicated by the very small gain and
phase margins. Sensitivity can be reduced by implementing multiple sensors, as

indicated by the improved gain and phase margins (see next subsections).

(ii) Two-Sensor Control

To eliminate the lower unstable region shown in Fig. 6(a), we place two sensors on opposite
sides of the mid-plane at z; = £0.01. It is crucial that both sensors are close to the mid-plane.
Placement of one sensor or both away from the mid-plane will give rise to a lower unstable
region.

in the two-sensor model we re-design the controller at the nominal condition used for the
case shown in Fig. 6(a). The two-sensor model result is shown in Fig. 6(b), in which the same
dashed curve as in Fig. 6(a) is included for comparison. We observe that the lower unstable
region has disappeared. The neutral curve of the monotonic mode (heavy solid line) terminates
at k =~ 7.3. Beyond this wavenumber the neutral curve of an oscillatory mode replaces the
stability limit (thin solid line). If we allow z, to tend to zero, then the solid curve in Fig. 6(b)
will approach the dashed curve. The gap between the two curves indicates there is a trade-off

between the large pole shifts due to the small sensor-plane offset, and the information gained
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by adding one more sensor near to the mid-plane. The gain and phase margins increase by
roughly 10% to 20% by adding the second sensor. However, the improvements are still too
small to be considered acceptable.

Better gain and phase margins (over 100% increase) can be obtained with sensors placed
further away from the mid-plane. The sensors located at about z;, = £0.25 appeeir to give
the best result. However, in this case a lower unstable region forms. The two-sensor model is
still not suited for practical implementation. For this reason, we shall not devote more effort

on analyzing this case. Instead, we proceed to the three-sensor model.

(#i) Three-Sensor Control

When three sensors are-used, we can improve gain and phase margins by placing two outer
sensors further away from the mid-plane without inducing any lower unstable region, provided
that the remaining sensor is placed at the mid-plane. With two sensors placed significantly
away from the mid-plane, it is observed that the sensor located at the mid-_plahe is no longer
sensitive to a small offset. To determine the best sensor locations, we first observe that a lower
unstable region always occurs when no sensor is placed at or very close to the mid—plane. With
a mid-plane sensor in niace, then by fixing one outer sensor and moving the other, it appears
that the best locations are when the two outer sensors are at equal distance from the mid-
plane. The best locations are determined in terms of the minimum of the real part of the least
stable closed-loop pole. Hence, for our design, we let the three sensor locations be: zgl) = —2z,,
z§2) =0 and z§3) = 2.

In order to improve gain and phase margins, we consider the Nyquist plots for various

values of z;. In the subsequent results concerning the stability limit of the controlled system

(see Fig. 8), a good nominal condition is found to be k* = 3.15 and Ra* = 14.8. For this
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nominal condition, Fig. 7(a) shows the Nyquist curves for z; = 0.1 (dbtted), 0.2 (dashed)
and 0.3 (solid). Figure 7(b) provides a magnified view of Fig. 7(a) near the point (-1,0). The
case zs = 0.3 presents no lower phase margin but has an upper Igilase margiﬁ of about 20.5°.
The upper and lower gain margins are about 3.3dB and 4.4dB, respectively. These values of
gain and phase margins are quite satisfactory. A slight improvement of the margins is still
possible by increasing zs further, at the expense of increasing the real part of the least stable
pole closer to zero, thus making the system less stable. Thus, zs = 0.3 appears to be our best

choice. It is desirable to see how changing the values of k* and Ra* will affect the gain and

~ phase margins for z; = 0.3. In Fig. 7(c) we compare the Nyquist curves for three different

nominal conditions: k* = 3.15 and Ra* = 14.8Ra. (solid), ¥* = 4.5 and Ra® = 12.5Racp

(dashed) and k* = 6.5 and Ra* = 15Ra (dotted). This choice of nominal points is based

on the subsequent analysis of the stability limit of the controlled system. As shown in the

magnified view of Fig. 7(d), the upper phase margin and the upper and lower gain margins for

the three norpinal conditions are quite close, suggesting that these margins are nof sensitive
to the values of k* and Ra*. However, the lower phase margin decreases rapidly as k* and

Ra* increase, as shown in the dotted line. The gain and phase margins for the design case

(solid) are within values used in practice.

Now, we consider the stability limit of the controlled system. In order to understand
how the choice of the nc;minal condition (k*, Ra*) affects stability, we present the results for
each set of nominal condition in Figs. 8(a)-8(c). For each nominal point the stable region is
delimited by the neutral curve. Our goal is to maximize the minimum of the neutral curve by
appropriateiy choosing the nominal point. In Fig. 8(a) we consider k* = 3 and Ra™ = 15Rao.
There is no unstable region to the left of this nominal point and the neutral curve to its right

corresponds to an oscillatory mode. The neutral curve in Fig. 8(b) corresponds to k* = 4.5
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and Ra* = 12.5Ra,. An unstable banana-shaped region (monotonic onset) is present on
each side of the main unstable region. The minimum of the main unstable region is about
Ra ~ 14.5Ra.,. We have decreased Ra* from 15Rac to 12.5Ra.p because at Ra* = 15Racg
(not shown) the two banana-shaped unstable regions have merged generating a vast lower
unstable region. However, because of the formation of an unstable region on each side, this
nominal point is not desirable. Figure 8(c) shows the neutral curve for the system controlled
by controllers designed at nominal condition k* = 6.5 and Ra* = 15Rac. The banana-shaped
region on the left of the nominal point has disappeared, but the region on the right remains.

By considering additional nominal points to the right of the first nominal point it seems
that there is no significant improvement in stability. In other words, when the nominal
wavenumber k* is larger than a certain value, the controllers become ineffective in stabilizing
the entire region up to Ra = Ra*, even though better local stabilization is always possible.
Based on the results of Figs. 8(a)-8(c), it appears that nominal points to the right of the first
point does not imp.rove the situation. In fact, we have tried more cases involving different
locations of the nominal points, but none seems to raise the minimum Ra of the unstable
region. To achieve a maximum Ra for the stable range, we fine-tune the first nominal point
and obtain k* = 3.15 and Ra* = 14.8Rac. For this point the stability diagram is shown
in Fig. 8(d). Stabilization up to Ra = 14.5Racq 18 achievable by using controllers designed
at only one nominal point. The neutral curve is formed by an oscillatory mode (thin solid
line) and a monotonic mode (heavy solid line). To illustrate the degree of stabilization with
respect to the uncontrolled system, we include in the figure the neutral curve (dashed line) for
the uncontrolled convection. Without feedback control, the region above the dashed curve is
unstable to convection. Below the solid curves, however, the region is stabilized by the LQG

control.
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In Section 2, we described that in the practical implementation a controller is responsible
for stabilizing an unstable normal mode whose wavenumber is indicated by a point on the
k-axis in Fig. 8(d). Results suggest that we can use the design condition k* = 3.15 and
Ra* = i4.8Rac0 for all controllers. Coincidentally, we note that the design wavenumber,
k* ~ 3.15, is quite close to the critical wavenumber of the uncontrolled convection, ks ~ 3.12.

We conclude the analysis of the planar sensor model by discussing the time response of
the closed-loop system. Our design condition is at k* = 3.15 and Ra* = 14.8Rap. For high
operating values of Ra, if we turn on the controller at this design condition with no initializa-
tion of the estimator, the transient response of the controlled system induces a large actuator
signal u(t), which will produce actuator saturation in practical applications. Therefore, in
practical applications, the-operating Ra value should be achieved in increments of Ra, so
that for each increment the estimator remains initialized. For example, consider a controller
operating at k = k. = 5.5. Assume that we have increased the operating Ra value gradually
up to Ra = 12Ra so that the closed-loop system remains at the no-motion equilibrium.
When approaching equilibrium, both the plant internal states and the estimator states tend
to zero. As an example, we increase Ra from Ra = 12Rac by an increment pf 2Ra.p to the
operating value Ra = 14Rac. Figure 9 shows the transient time responses for this case. In
particular, Fig. 9(a) shows the temperatures measured by the planar sensors as functions of
time, while Fig. 9(b) shows the control action signal u(t). The initial transieqt disappears and
the system settles to a new no-motion equilibrium. If we use a smaller increment than 2Ra.y,
an even better result can be expected in terms of smaller overshoot and a faster approach to
eduilibrium.

It is important to consider the parameters in a physical set up to see if the LQG controller

can be applied to an experiment. We note that ¢ is in the unit of diffusive time unit, d?/x.
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For example, in the case of a layer of water of thickness of d = 0.8 cm, this unit is about 438
seconds. A mildly supercritical condition Ra ~ 1800 corresponds to AT* = 0.14°C, while for
Ra = 14Rag, the basic temperature difference is about 1.86°C. Thus, the physical quantities
are reasonably easy to achieve in practice.

Comparison between the stability achievable by the proportional feedback con-
trol (Tang and Bau, 1993, 1994 as well as our Fig. 3(a)) and the LQG control
is possible only from a qualitative point of view. The neutral curve structure
using the LQG control law system appears to be more complex, possibly due to
the additional filter modes. An additional important difference is worth noting:
For proportional feedback beyond a certain value of Ra, there is no stable region
regardless of the gain K,. The unstable mode can be either monotonic or oscilla-
tory. For the LQG control, the unstable regions can occur above and below the
design value Ra*. A local stable region about Ra* can always be maintained. In
fact, an even higher stable value of Ra than 14.8 Ra. can be achieved by gradually

increasing the temperature gradient across the fluid layer.

+.2.2 Shadowgraph Sensor Model

We now turn to the shadowgraph sensor model. The maximum Ra achievable over the stable
range for the proportional feedback control is about 3.13Racg. We attempt to increase the
stable region using the LQG method. However, for this sensor model our results indicate a
significantly weaker stabilization. We have first designed a controller for Ra* =~ 10Ra but
encountered a vast lower unstable region. The second convection mode, which is closest to
the imaginary axis, is destabilized in the control process. As a result, we gradually decreased

the nominal condition Ra*, down to a value of 5Rac. The drop in performance in the critical
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Rayleigh number with respect to the planar sensor model is probably due to the nature of
the shadowgraph sensor, which only measures the averaged temperature of the fluid layer.
Figure 10(2) shows the stability diagram when controllers designed at five nominal points are
used. The nominal points have same Ra* while k* increases by a factor Ak* = 1. The results
show that, except for the first nominal point (k* = 1), each nominal point is enclosed by a
left and a right stability limit (thin line for oscillatory mode and heavy line for monotonic
mode). The stable range of wavenumbers associated with each nominal point is typically
small. Figure 10(a) reveals two depressed unstable regions that reach below Ra = Ra” (near
k = 2.4 and k = 3.4). To demonstrate how these dips can be removed, we add two more
nominal points, one is chosen at k* = 9.4 and the other at ¥* = 3.3, both with a slightly
higher Ra* = 5.4Ra. The improved result is shown in Fig. 10(b), which indicates that the
minimum Ra of the unstable region is now above 5Ra.

Unlike the planar sensor model, the minimum Ra of the neutral curve obtained by applying
a controller designed at a single nominal point over the whole wavenumber range is not that
much higher than the value obtained using proportional feedback control. There may be

further improvements on the LQG controller to be made, but we will not attempt further

design in this study.

5 Conclusion

We have investigated the LQG (#2) controller design for two sensor models (planar sensor
model and shadowgraph sensor model) studied by previous authors (Tang and Bau, 1994;
Howle, 1997a) using proportional controllers. Based on our results for Pr =7, we have
shown that the robustness of the controlled system is improved in two aspects: (i)

the controller remains stable over a larger range of the parameter Ra, and (ii) the robustness of
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the controller accommodates to a degree unmodelled dynamics and nonlinearities, as measured
by gain and phase margins on the Nyquist diagram. It should be noted that although only
one controller is needed to be designed at (k*, Ra*), this controller is implemented at each
wavenumber k to span over the entire range of unstable wavenumbers.

The number of sensors plays an important role in dramatically improving the robustness
of the stabilization of the system operating at large Ra. Because multiple sensor planes can
be easily incorporated into the planar sensor model, the performance of the planar sensor
model is found to be superior to that of the shadowgraph sensor model, which only utilizes
averaged temperature measurements. By using three planar sensors, it is possible to stabilize
the no-motion state up to Ra = 14.5Ra. The controller has 3 dB of gain margin and 20
degrees of phase margin at the design parameter values. Beyond this value of Ra, stabilization
in the region near to a nominal point can still be achieved, but an unstable region forms for
Ra below Ra*. It should be noted that in our design procedure, we designed the controllers
to span the whole range of unstable wavenumbefs and at the same time demanded that the
whole Ra range from zero up to 14.5Raco be stable.

We have also shown that the transient responses incurred at the initial time can be reduced
significantly by increasing Ra to its operating vaiue in small increments. This technique allows
us to initialize the estimator at each increment of Ra and consequently avoid controller satu-

_rations. Furthermore, by making incremental changes in Ra and using a controller designed
to stabilize the system in a region about the design values, the value of the maximum value
of Ra could be increased further, even though there will be unstable regions formed below
stable regions in Ra.

~ So far, we have assumed that the order of the controller is equal to the order

of the plant. In full numerical simulations and experiments, controller designs
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based on reduced-order models are more practical for implementation (see, for
example, Cortelezzi and Speyer, 1998, Armaou and Christofides, 2000). In our
current model the actuation is assumed to be distributed“wéontinuously. In practice

it will be discrete and implementation issues need to be addressed.
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Figure Captions

Fig. 1: The geometric configuration.

Fig. 2: (a) Schematic for the physical implementation of the multi-wavenumber controller;

(b) Block diagram of the control loop for a single wavenumber.

Fig. 3: (a) Neutral curves for the planar sensor model using the proportional feedback control.
From bottom up, the three sets correspond to z; = —0.1, 0.0 and 0.1 (heavy and thin lines
indicate monotonic and oscillatory onset, respectively). (b) Pole-zero diagram of the plant for

k = 4.4, Ra = 3.5Ra,y and (c) corresponding root loci for K, varied between 0 and 2000.

Fig. 4: Stability diagrams for the planar sensor model with one sensor, using the LQG
control. The nominal condition (k*, Ra*) is denoted by a solid circle. The heavy and thin
lines correspond to the monotonic and osciliatory onsets, respectively. Panels 4(a)-4(b) and
4(f) are obtained for z; = 0.15 and Panels 4(c)-4(d) for zs = —0.15. All 4(a)-4(e) correspond
to Ra* = 5Ra.p and k* = 5.3 but 4(f) corresponds to Ra* = IORacol and same k*. Panel 4(e)
shows the sensitivity about zs = 0.0 with respect to z;. Panel 4(f) shows a vast lower unstable

region developed at a sufficiently high Ra*.

Fig. 5: Stability diagrams for the planar sensor model with a single mid-plane sensor: (a)
neutral curve for the nominal condition k* = 4 and Ra* = 10Ra; (b) neutral curve for the
nominal conditions £* = 6 and Ra* = 10Rao; (c) the resulting neutral curve by incorporating
the two sets of nominal conditions. This curve coincides with the neutral curve of the first

odd mode of convection in the uncontrolled case.
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Fig. 6:. (a) Stability diagram for the one-sensor model with a small offset z; = 0.01. Re-
sults show a vast lower unstable region below Ra* = 10Rar. The heavy (thin) solid line
correspbnds to a monotonic (oscillatory) onset. (b) Stability diagram for the two-sensor
model, with a second sensor positioned at z; = —0.01. . As a result, the lower unstable region

1s eliminated.

Fig. 7: Nyquist plots for the three-sensor model: (a) Nyquist curves at nominal condition
k* = 3.15 and Ra* = 14.5Ra. and sensor locations are z; = 0.1(dashed), 0.2 (dotted) and
0.30 (solid); (b) magnified view of panel (a); (¢) Nyquist curves for z; = 0.3 and nominal
conditions with k* = 3.15 and Ra* = 14.5Ra (solid), ¥* = 4.5 and Ra* = 12.5Ra,g (dashed)

and k* = 6.5 and Ra* = 15Ra.y (dotted); (d) magnified view of panel (c).

Fig. 8: The stability diagrams for the three-sensor model with sensor plahes located at
zs = —0.3, 0.0 and 0.3, and nominal conditions at (a) k* = 3 and Ra* = 15Ra, (b) k* = 4.5

and Ra* = 12.5Ra., (¢) k* = 6.5 and Ra* = 15Ra.. (d) k* = 3.15 and Ra* = 14.8Ra (the

design conditions).

Fig. 9: The time response of (a) the three measurements and (b) the control action u(t),
in the three-sensor model with the nominal condition k¥* = 3.15 and Ra* = 14.8Ra.. The

convection mode considered is at Ra = 14Ra.y and the least stable wavenumber about k = 5.5.

Fig. 10: (a) The stability diagram for the shadowgraph sensor model shoWing the stability

limit corresponding to five equally spaced nominal points at Ra* = 5Raco; (b) An improved
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design with two nominal points added. Stabilization for the entire range of wavenumbers up

to Ra* = 5Ra.g is achievable for this improved case.
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